About this Journal Submit a Manuscript Table of Contents
Abstract and Applied Analysis
Volume 2013 (2013), Article ID 387167, 9 pages
http://dx.doi.org/10.1155/2013/387167
Research Article

Voltage Stability Bifurcation Analysis for AC/DC Systems with VSC-HVDC

1School of Electrical Engineering and Automation, Henan Polytechnic University, Jiaozuo 454000, China
2College of Energy and Electrical Engineering, Hohai University, Nanjing 210098, China

Received 24 January 2013; Accepted 1 March 2013

Academic Editor: Chuangxia Huang

Copyright © 2013 Yanfang Wei et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Kouro, M. Malinowski, K. Gopakumar et al., “Recent advances and industrial applications of multilevel converters,” IEEE Transactions on Industrial Electronics, vol. 57, no. 8, pp. 2553–2580, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. N. Flourentzou, V. G. Agelidis, and G. D. Demetriades, “VSC-based HVDC power transmission systems: an overview,” IEEE Transactions on Power Electronics, vol. 24, no. 3, pp. 592–602, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. Z. Huang, B. T. Ooi, L. A. Dessaint, and F. D. Galiana, “Exploiting voltage support of voltage-source HVDC,” IEE Proceedings: Generation, Transmission and Distribution, vol. 150, no. 2, pp. 252–256, 2003. View at Scopus
  4. L. Zhang, L. Harnefors, and H. P. Nee, “Interconnection of two very weak AC systems by VSC-HVDC links using power-synchronization control,” IEEE Transactions on Power Systems, vol. 26, no. 1, pp. 344–355, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. M. P. Bahrman and B. K. Johnson, “The ABCs of HVDC transmission technologies,” IEEE Power and Energy Magazine, vol. 5, no. 2, pp. 32–44, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. L. Zhang, H. P. Nee, and L. Harnefors, “Analysis of stability limitations of a VSC-HVDC link using power-synchronization control,” IEEE Transactions on Power Systems, vol. 26, no. 3, pp. 1326–1337, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. Y. Jiang-Häfner, M. Hyttinen, and B. Pääjärvi, “On the short circuit current contribution of HVDC light,” in Proceedings of IEEE PES Transmission and Distribution Conference and Exhibition, October 2002.
  8. F. L. Shun, M. Reza, K. Srivastava, S. Cole, D. van Hertem, and R. Belmans, “Influence of VSC HVDC on transient stability: case study of the Belgian grid,” in Proceedings of the IEEE Power and Energy Society General Meeting (PES '10), Minneapolis, Minn, USA, July 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. H. F. Latorre and M. Ghandhari, “Improvement of power system stability by using a VSC-HVdc,” International Journal of Electrical Power and Energy Systems, vol. 33, no. 2, pp. 332–339, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. F. A. R. Al Jowder and B. T. Ooi, “VSC-HVDC station with SSSC characteristics,” IEEE Transactions on Power Electronics, vol. 19, no. 4, pp. 1053–1059, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Zhang and G. Bao, “Voltage stability improvement for large wind farms connection based on VSC-HVDC,” in Proceedings of the Asia-Pacific Power and Energy Engineering Conference (APPEEC '11), Wuhan, China, March 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. H. Livani, J. Rouhi, and H. Karirni-Davijani, “Voltage stabilization in connection of wind farms to transmission network using VSC-HVDC,” in Proceedings of the 43rd International Universities Power Engineering Conference (UPEC '08), Padova, Italy, September 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. C. Guo and C. Zhao, “Supply of an entirely passive AC network through a double-infeed HVDC system,” IEEE Transactions on Power Electronics, vol. 25, no. 11, pp. 2835–2841, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. H. F. Latorre, M. Ghandhari, and L. Söder, “Active and reactive power control of a VSC-HVdc,” Electric Power Systems Research, vol. 78, no. 10, pp. 1756–1763, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. H. F. Latorre and M. Ghandhari, “Improvement of voltage stability by using VSC-HVdc,” in Proceedings of IEEE Transmission and Distribution Asia and Pacific Conference, Seoul, South Korea, October 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. Y. Gao, Z. Wang, and H. Ling, “Available transfer capability calculation with large offshore wind farms connected by VSC-HVDC,” in Proceedings of IEEE Innovative Smart Grid Technologies—Asia Conference, Tianjin, China, May 2012.
  17. L. C. Azimoh, K. Folly, S. P. Chowdhury, S. Chowdhury, and A. Haddad, “Investigation of voltage and transient stability of HVAC network in hybrid with VSC-HVDC and HVDC link,” in Proceedings of the 45th International Universities' Power Engineering Conference (UPEC '10), pp. 1–6, Wales, UK, August-September 2010. View at Scopus
  18. X. P. Zhang, “Multiterminal voltage-sourced converter-based HVDC models for power flow analysis,” IEEE Transactions on Power Systems, vol. 19, no. 4, pp. 1877–1884, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Pizano-Martinez, C. R. Fuerte-Esquivel, H. Ambriz-Pérez, and E. Acha, “Modeling of VSC-based HVDC systems for a Newton-Raphson OPF algorithm,” IEEE Transactions on Power Systems, vol. 22, no. 4, pp. 1794–1803, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. C. Angeles-Camacho, O. L. Tortelli, E. Acha, and C. R. Fuerte-Esquivel, “Inclusion of a high voltage DC-voltage source converter model in a Newton-Raphson power flow algorithm,” IEE Proceedings: Generation, Transmission and Distribution, vol. 150, no. 6, pp. 691–696, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. C. Liu, B. Zhang, Y. Hou, F. F. Wu, and Y. Liu, “An improved approach for AC-DC power flow calculation with multi-infeed DC systems,” IEEE Transactions on Power Systems, vol. 26, no. 2, pp. 862–869, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. U. Arifoglu, “The power flow algorithm for balanced and unbalanced bipolar multiterminal ac-dc systems,” Electric Power Systems Research, vol. 64, no. 3, pp. 239–246, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. X. Wang, Y. Song, and M. Irving, Modern Power Systems Analysis, Springer, Berlin, Germany, 2008.
  24. T. Smed, G. Andersson, G. B. Sheble, and L. L. Grigsby, “A new approach to AC/DC power flow,” IEEE Transactions on Power Systems, vol. 6, no. 3, pp. 1238–1244, 1991. View at Publisher · View at Google Scholar · View at Scopus
  25. S. H. Li and H. D. Chiang, “Continuation power flow with nonlinear power injection variations: a piecewise linear approximation,” IEEE Transactions on Power Systems, vol. 23, no. 4, pp. 1637–1643, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. V. Ajjarapu and C. Christy, “The continuation power flow: a tool for steady state voltage stability analysis,” IEEE Transactions on Power Systems, vol. 7, no. 1, pp. 416–423, 1992. View at Publisher · View at Google Scholar · View at Scopus
  27. C. Zheng, X. X. Zhou, and R. M. Li, “Dynamic modeling and transient simulation for voltage source converter based HVDC,” Power System Technology, vol. 29, no. 16, pp. 1–5, 2005. View at Scopus
  28. Power Systems Test Case Archive, “University of Washington,” http://www.ee.washington.edu/research/pstca/.