About this Journal Submit a Manuscript Table of Contents
Abstract and Applied Analysis
Volume 2013 (2013), Article ID 397053, 6 pages
http://dx.doi.org/10.1155/2013/397053
Research Article

Exact and Analytic-Numerical Solutions of Lagging Models of Heat Transfer in a Semi-Infinite Medium

Departamento Matemática Aplicada, Universidad de Alicante, Apartado 99, 03080 Alicante, Spain

Received 1 November 2013; Accepted 4 December 2013

Academic Editor: L. Jódar

Copyright © 2013 M. A. Castro et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Different non-Fourier models of heat conduction have been considered in recent years, in a growing area of applications, to model microscale and ultrafast, transient, nonequilibrium responses in heat and mass transfer. In this work, using Fourier transforms, we obtain exact solutions for different lagging models of heat conduction in a semi-infinite domain, which allow the construction of analytic-numerical solutions with prescribed accuracy. Examples of numerical computations, comparing the properties of the models considered, are presented.

1. Introduction

Non-Fourier models of heat conduction have increasingly been considered in recent years to model microscale and ultrafast, transient, nonequilibrium responses in heat and mass transfer, where thermal lags and nonclassical phenomena are present (see, e.g., [1] and references therein). The growing area of applications of these models include, among other examples, the processing of thin-film engineering structures with ultrafast lasers [2, 3], the transfer of heat in nanofluids [4, 5], or the exchange of heat in biological tissues [68].

In the Dual-Phase-Lag (DPL) model [911], the equation relating the heat flux vector and the temperature , for time and spatial point , where is the thermal conductivity, incorporates two lags, for the heat flux and for the temperature gradient. When both lags are zero, the Fourier law is recovered, while for and , it reduces to the Single-Phase-Lag (SPL) model [12].

Combining (1) with the principle of energy conservation, where is the volumetric heat capacity and , the volumetric heat source, in the absence of heat sources a partial differential equation with delay is obtained [13, 14] as where is the thermal diffusivity. When both lags are zero, the diffusion equation, a parabolic partial differential equation which represents the classical model for heat conduction and other transport phenomena, is obtained.

Using first-order approximations in (1), a hyperbolic equation is derived, commonly referred to as the DPL model [9], here denoted as DPL(), which for reduces to the Cattaneo-Vernotte (CV) model [1517].

Approximations in (1) up to order two in and/or have also been considered [18, 19], leading to models that will be denoted as DPL(), and DPL(), From the original formulation of the DPL model, as given in (1), for , a retarded partial differential equation is obtained [13, 14], referred to as the delayed heat conduction model (DH), where .

Exact solutions for some particular DPL models in different settings have been discussed (e.g., [11, 13, 14, 2022]), and many specific methods to construct numerical solutions, usually in finite domains using finite difference schemes, have been developed (see, e.g., [2327]).

In semi-infinite domains, some particular problems have also been considered. Solutions for heat propagation according to DPL() model in a semi-infinite solid, produced by suddenly raising the temperature at the boundary, were obtained in [11, 20], using Laplace and Fourier transforms. Relations between the local values of heat flux and temperature, in the form of integral equations, in a semi-infinite solid were considered in [13, 28].

In this work, using Fourier transforms, explicit solutions for lagging models of heat conduction in a semi-infinite domain, with different types of boundary conditions, are obtained, allowing the construction of numerical solutions with bounded errors.

It should be noted that Fourier transforms can also be used in time-dependent problems (e.g., [29, 30]), and the approach of this work could also be useful for time-dependent DPL models, which have already been proposed [31].

2. Solutions of DPL Models in a Semi-Infinite Domain

Consider a plate of infinite thickness, , that can be heated either at its surface, , or up to a certain depth, . We will consider, for , either Dirichlet, , or Neumann, , boundary conditions and also that Appropriate initial conditions must be provided for the different models. Thus, for DPL() initial values for temperature and its time derivative have to be specified, while for DPL() and DPL(), its second derivative also has to be given, and for the DH model, the initial condition for the temperature has to be specified for a time interval of amplitude, For a wide class of initial functions [32, 33], the method of Fourier transform can be used to eliminate derivatives in the spatial domain and to obtain expressions for the exact solutions in the form of an infinite integral, either using Fourier sine transforms for Dirichlet conditions, or cosine transforms for Neumann conditions, where the functions , which are the corresponding Fourier sine or cosine transforms of , are obtained as solutions of the transformed temporal problems, depending on the continuous set of eigenvalues .

For the family of DPL approximations, the transformed problems are initial-value problems for linear differential equations with constant coefficients. Thus, for DPL(), one gets for DPL(), the problem reads with initial conditions and, with the same initial conditions as in DPL(), for DPL(), one gets where , , and are the Fourier sine or cosine transforms, according to the type of boundary conditions, of the initial functions , , and , respectively.

Hence, these problems can be solved, obtaining expressions for in terms of the roots of the corresponding characteristic equation, and thus explicit expressions for the exact solutions for these models, in the form of (13) or (14), can be obtained.

For the DH model, the transformed temporal problems are initial-value problems for delay differential equations with general initial functions, where is the appropriate Fourier transform, according to the boundary conditions, of the initial function . To obtain constructive solutions for this problem, a combination of the steps method and a convolution integral can be applied [34, 35], producing the following expression, for ,

The solutions obtained with the Fourier transforms, as given in (13) or (14), can be shown to converge and provide exact solutions under adequate integrability and regularity conditions on the initial functions. Numerical integration is required in general to compute numerical approximations of these solutions, with errors that can be bounded in finite spatial and temporal domains by controlling errors in the numerical integrators or by appropriately truncating the infinite integrals. However, for some particular initial functions, the solutions given by (13) or (14) may reduce to finite integrals.

3. Numerical Examples

Numerical examples are presented in the following figures, where, in order to properly compare DPL and DH models, the initial interval for DH, where the initial function is given, is displaced to , and the initial functions for DPL models are set so that the values of temperature and its first derivative at , and also its second derivative for DPL() and DPL(), are matched to those of the DH model. The classical diffusion model, whose solution is available and readily obtained [36], is also included as reference.

First, we consider models with , so that DPL() and DPL() are equal, and an initial function with damped temperature oscillations, thought to be the result of a modulated heat source that is switched off at , showing the transient behavior for the different DPL models for different values of (Figure 1), as well as their differences from classical diffusion (Figure 2).

fig1
Figure 1: Temperature evolution, at , for DPL, DH, and classical diffusion (Diff) models with Dirichlet boundary conditions and parameters , , and initial function , for (a) and (b).
fig2
Figure 2: Differences from classical diffusion for models DPL and DH, for the data shown in Figure 1.

In Figure 3, a more detailed view of the spatiotemporal behavior of the DH model (Figure 3(a)) and differences from DH of DPL() and DPL() (Figure 3(b)) are presented.

fig3
Figure 3: Temperature evolution, for , for the DH model with Dirichlet boundary conditions and parameters , , , and initial function (a), and differences from DH of DPL() and DPL() at (b).

In Figure 4, different values of and , such that is kept constant, are used, so that variations in the temperature evolution are observed in the DPL approximate models, but not in the DH model, which only depends on the value of .

fig4
Figure 4: Temperature evolution for DPL, DH, and classical diffusion (Diff) models (left), and differences from DH of DPL approximations (right), at , with Dirichlet boundary conditions, initial function , and parameters , , and (top), or and (down).

References

  1. D. Y. Tzou and J. Xu, “Nonequilibrium transport: the lagging behavior,” in Advances in Transport Phenomena 2010, L. Q. Wang, Ed., vol. 2 of Advances in Transport Phenomena, pp. 93–170, Springer, Berlin, Germany, 2011. View at Publisher · View at Google Scholar
  2. T. Q. Qiu and C. L. Tien, “Short-pulse laser heating on metals,” International Journal of Heat and Mass Transfer, vol. 35, no. 3, pp. 719–726, 1992. View at Scopus
  3. C. L. Tien and T. Q. Qiu, “Heat transfer mechanism during short pulse laser heating of metals,” American Society of Mechanical Engineers Journal of Heat Transfer, vol. 115, pp. 835–841, 1993.
  4. L. Wang and X. Wei, “Heat conduction in nanofluids,” Chaos, Solitons and Fractals, vol. 39, no. 5, pp. 2211–2215, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. J. J. Vadasz and S. Govender, “Thermal wave effects on heat transfer enhancement in nanofluids suspensions,” International Journal of Thermal Sciences, vol. 49, no. 2, pp. 235–242, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. F. Xu, K. A. Seffen, and T. J. Lu, “Non-Fourier analysis of skin biothermomechanics,” International Journal of Heat and Mass Transfer, vol. 51, no. 9-10, pp. 2237–2259, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Zhou, Y. Zhang, and J. K. Chen, “An axisymmetric dual-phase-lag bioheat model for laser heating of living tissues,” International Journal of Thermal Sciences, vol. 48, no. 8, pp. 1477–1485, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Zhou, J. K. Chen, and Y. Zhang, “Dual-phase lag effects on thermal damage to biological tissues caused by laser irradiation,” Computers in Biology and Medicine, vol. 39, no. 3, pp. 286–293, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. D. Y. Tzou, “The generalized lagging response in small-scale and high-rate heating,” International Journal of Heat and Mass Transfer, vol. 38, no. 17, pp. 3231–3240, 1995. View at Scopus
  10. D. Y. Tzou, “Experimental support for the lagging behavior in heat propagation,” Journal of Thermophysics and Heat Transfer, vol. 9, no. 4, pp. 686–693, 1995. View at Scopus
  11. D. Y. Tzou, Macro—to Micro-Scale Heat Transfer: The Lagging Behavior, Chemical and Mechanical Engineering Series, Taylor & Francis, Washington, DC, USA, 1st edition, 1996.
  12. D. Y. Tzou, “On the thermal shock wave induced by moving heat source,” Journal of Heat Transfer, vol. 111, no. 2, pp. 232–238, 1989. View at Scopus
  13. V. V. Kulish and V. B. Novozhilov, “An integral equation for the dual-lag model of heat transfer,” Journal of Heat Transfer, vol. 126, no. 5, pp. 805–808, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Xu and L. Wang, “Dual-phase-lagging heat conduction based on Boltzmann transport equation,” International Journal of Heat and Mass Transfer, vol. 48, no. 25-26, pp. 5616–5624, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. C. Cattaneo, “Sur une forme de l'équation de la chaleur éliminant le paradoxe d'une propagation instantanée,” Comptes Rendus de l'Académie des Sciences, vol. 247, pp. 431–433, 1958. View at MathSciNet
  16. P. Vernotte, “Les paradoxes de la théorie continue de l'équation de la chaleur,” Comptes Rendus de l'Académie des Sciences, vol. 246, pp. 3154–3155, 1958. View at MathSciNet
  17. P. Vernotte, “Some possible complications in the phenomena of thermal conduction,” Comptes Rendus de l'Académie des Sciences, vol. 252, pp. 2190–2191, 1961.
  18. D. Y. Tzou, “Unified field approach for heat conduction from macro—to micro-scales,” Journal of Heat Transfer, vol. 117, no. 1, pp. 8–16, 1995. View at Scopus
  19. R. Quintanilla and R. Racke, “A note on stability in dual-phase-lag heat conduction,” International Journal of Heat and Mass Transfer, vol. 49, no. 7-8, pp. 1209–1213, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. P. J. Antaki, “Solution for non-Fourier dual phase lag heat conduction in a semi-infinite slab with surface heat flux,” International Journal of Heat and Mass Transfer, vol. 41, no. 14, pp. 2253–2258, 1998. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Su, W. Dai, P. M. Jordan, and R. E. Mickens, “Comparison of the solutions of a phase-lagging heat transport equation and damped wave equation,” International Journal of Heat and Mass Transfer, vol. 48, no. 11, pp. 2233–2241, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. J. Escolano, F. Rodríguez, M. A. Castro, F. Vives, and J. A. Martín, “Exact and analytic-numerical solutions of bidimensional lagging models of heat conduction,” Mathematical and Computer Modelling, vol. 54, no. 7-8, pp. 1841–1845, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  23. W. Dai and R. Nassar, “A finite difference scheme for solving the heat transport equation at the microscale,” Numerical Methods for Partial Differential Equations, vol. 15, no. 6, pp. 697–708, 1999. View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  24. W. Dai and R. Nassar, “A compact finite difference scheme for solving a three-dimensional heat transport equation in a thin film,” Numerical Methods for Partial Differential Equations, vol. 16, no. 5, pp. 441–458, 2000. View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  25. W. Dai and R. Nassar, “A compact finite-difference scheme for solving a one-dimensional heat transport equation at the microscale,” Journal of Computational and Applied Mathematics, vol. 132, no. 2, pp. 431–441, 2001. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  26. H. Wang, W. Dai, R. Nassar, and R. Melnik, “A finite difference method for studying thermal deformation in a thin film exposed to ultrashort-pulsed lasers,” International Journal of Heat and Mass Transfer, vol. 49, no. 15-16, pp. 2712–2723, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. J. Cabrera, M. A. Castro, F. Rodríguez, and J. A. Martín, “Difference schemes for numerical solutions of lagging models of heat conduction,” Mathematical and Computer Modelling, vol. 57, no. 7-8, pp. 1625–1632, 2013. View at Publisher · View at Google Scholar · View at MathSciNet
  28. V. Kulish and K. V. Poletkin, “A generalized relation between the local values of temperature and the corresponding heat flux in a one-dimensional semi-infinite domain with the moving boundary,” International Journal of Heat and Mass Transfer, vol. 55, no. 23-24, pp. 6595–6599, 2012. View at Publisher · View at Google Scholar
  29. L. Jódar and J. Pérez, “Exact solution of mixed problems for variable coefficient one-dimensional diffusion equation,” Computers & Mathematics with Applications, vol. 41, no. 5-6, pp. 689–696, 2001. View at Publisher · View at Google Scholar · View at MathSciNet
  30. L. Jódar, J. Pérez Quiles, and R. J. Villanueva, “Explicit solution of time dependent diffusion problems in a semi-infinite medium,” Computers & Mathematics with Applications, vol. 43, no. 1-2, pp. 157–167, 2002. View at Publisher · View at Google Scholar · View at MathSciNet
  31. M. A. Castro, F. Rodríguez, J. Cabrera, and J. A. Martín, “Difference schemes for time-dependent heat conduction models with delay,” International Journal of Computer Mathematics, 2013. View at Publisher · View at Google Scholar
  32. E. C. Tichmarsh, An Introduction to the Theory of Fourier Integrals, Clarendon Press, Oxford, UK, 1962.
  33. R. N. Bracewell, The Fourier Transform and Its Applications, McGraw-Hill, New York, NY, USA, 1965.
  34. J. A. Martín, F. Rodríguez, and R. Company, “Analytic solution of mixed problems for the generalized diffusion equation with delay,” Mathematical and Computer Modelling, vol. 40, no. 3-4, pp. 361–369, 2004. View at Publisher · View at Google Scholar · View at MathSciNet
  35. E. Reyes, F. Rodríguez, and J. A. Martín, “Analytic-numerical solutions of diffusion mathematical models with delays,” Computers & Mathematics with Applications, vol. 56, no. 3, pp. 743–753, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  36. H. S. Caxslaw and J. C. Jaeger, Conduction of Heat in Solids, Oxford University Press, Oxford, UK, 1995.