About this Journal Submit a Manuscript Table of Contents
Abstract and Applied Analysis
Volume 2013 (2013), Article ID 398293, 13 pages
http://dx.doi.org/10.1155/2013/398293
Research Article

Nonlinear Filtering Preserves Chaotic Synchronization via Master-Slave System

1Academia de Matemáticas, Universidad Politécnica de San Luis Potosí , Urbano Villalón 500, 78369 San Luis Potosí, SLP, Mexico
2División de Matemáticas Aplicadas, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa de San José 2055, 78216 San Luis Potosí, SLP, Mexico
3Departamento de Físico Matemáticas, Universidad Autónoma de San Luis Potosí, Alvaro Obregón 64, Col. Centro 78000 San Luis Potosí, SLP, Mexico

Received 17 December 2012; Revised 26 February 2013; Accepted 6 March 2013

Academic Editor: H. G. Enjieu Kadji

Copyright © 2013 J. S. González-Salas et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. M. Pecora and T. L. Carroll, “Synchronization in chaotic systems,” Physical Review Letters, vol. 64, no. 8, pp. 821–824, 1990. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  2. I. Campos-Cantón, E. Campos-Cantón, J. S. Murgúa-Ibarra, and M. E. Chavira-Rodríguez, “Secure communication system using chaotic signals,” Ingeniería, Investigación y Tecnología, vol. 10, no. 1, 2009.
  3. M. G. Rosenblum, A. S. Pikovsky, and J. Kurths, “From phase to lag synchronization in coupled chaotic oscillators,” Physical Review Letters, vol. 78, no. 22, pp. 4193–4196, 221997.
  4. M. G. Rosenblum, A. S. Pikovsky, and J. Kurths, “Phase synchronization of chaotic oscillators,” Physical Review Letters, vol. 76, no. 11, pp. 1804–1807, 1996.
  5. V. S. Anishchenko, T. E. Vadivasova, D. È. Postnov, and M. A. Safonova, “Synchronization of chaos,” International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, vol. 2, no. 3, pp. 633–644, 1992. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  6. H. D. I. Abarbanel, N. F. Rulkov, and M. M. Sushchik, “Generalized synchronization of chaos: the auxiliary system approach,” Physical Review E, vol. 53, no. 5, pp. 4528–4535, 1996.
  7. E. Campos, J. Urías, and N. F. Rulkov, “Multimodal synchronization of chaos,” Chaos, vol. 14, no. 1, pp. 48–54, 2004. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  8. L. Ontañón-García, E. Campos-Cantón, R. Femat, I. Campos-Cantón, and M. Bonilla-Marín, “Multivalued synchronization by poincar coupling,” Communications in Nonlinear Science and Numerical Simulation. View at Publisher · View at Google Scholar
  9. J. S. González Salas, E. Campos Cantón, F. C. Ordaz Salazar, and I. Campos Cantón, “Forced synchronization of a self-sustained chaotic oscillator,” Chaos, vol. 18, no. 2, Article ID 023136, p. 9, 2008. View at Publisher · View at Google Scholar · View at MathSciNet
  10. E. C. Cantón, J. S. C. Salas, and J. Urías, “Filtering by nonlinear systems,” Chaos, vol. 18, no. 4, Article ID 043118, p. 4, 2008. View at Publisher · View at Google Scholar · View at MathSciNet
  11. E. N. Lorenz, “Deterministic nonperiodic flow,” Journal of the Atmospheric Sciences, vol. 20, pp. 130–141, 1963.
  12. L. V. Turukina and A. Pikovsky, “Hyperbolic chaos in a system of resonantly coupled weakly nonlinear oscillators,” Physics Letters A, vol. 375, no. 11, pp. 1407–1411, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet