About this Journal Submit a Manuscript Table of Contents
Abstract and Applied Analysis
Volume 2013 (2013), Article ID 412796, 10 pages
http://dx.doi.org/10.1155/2013/412796
Research Article

Strong Proximal Continuity and Convergence

1Department of Mathematics, Seconda Università degli Studi di Napoli, 81100 Caserta, Italy
2Department of Mathematics, Politecnico di Milano, 20133 Milano, Italy
396 Dewson Street, Toronto, ON, Canada M3J 1P3

Received 16 October 2012; Accepted 9 January 2013

Academic Editor: Yuriy Rogovchenko

Copyright © 2013 Agata Caserta et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Beer and S. Levi, “Strong uniform continuity,” Journal of Mathematical Analysis and Applications, vol. 350, no. 2, pp. 568–589, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  2. A. Caserta, G. Di Maio, and L. Holá, “Arzelà's Theorem and strong uniform convergence on bornologies,” Journal of Mathematical Analysis and Applications, vol. 371, no. 1, pp. 384–392, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. N. Bouleau, “Une structure uniforme sur un espace F(E; F),” Cahiers de Topologie et Géométrie Différentielle Catégoriques, vol. 11, no. 2, pp. 207–214, 1969.
  4. N. Bouleau, “On the coarsest topology preserving continuity,” http://arxiv.org/abs/math/0610373.
  5. G. Beer, “The Alexandroff property and the preservation of strong uniform continuity,” Applied General Topology, vol. 11, no. 2, pp. 117–133, 2010. View at Zentralblatt MATH · View at MathSciNet
  6. M. S. Gagrat and S. A. Naimpally, “Proximity approach to extension problems,” Fundamenta Mathematicae, vol. 71, no. 1, pp. 63–76, 1971. View at Zentralblatt MATH · View at MathSciNet
  7. S. Leader, “On the completion of proximity spaces by local clusters,” Fundamenta Mathematicae, vol. 48, pp. 201–215, 1960.
  8. O. Njastad, “Some properties of proximity and generalized uniformity,” Mathematica Scandinavica, vol. 12, pp. 47–56, 1963.
  9. A. Di Concilio and S. A. Naimpally, “Proximal convergence,” Monatshefte für Mathematik, vol. 103, no. 2, pp. 93–102, 1987. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Di Concilio and S. Naimpally, “Proximal set-open topologies,” Bollettino della Unione Matematica Italiana B, vol. 3, no. 1, pp. 173–191, 2000. View at Scopus
  11. G. Di Maio, E. Meccariello, and S. Naimpally, “Hyper-continuous convergence in function spaces,” Questions and Answers in General Topology, vol. 22, no. 2, pp. 157–162, 2004. View at Zentralblatt MATH · View at MathSciNet
  12. G. Di Maio, E. Meccariello, and S. Naimpally, “Hyper-continuous convergence in function spaces. II,” Ricerche di Matematica, vol. 54, no. 1, pp. 245–254, 2005. View at MathSciNet
  13. G. Di Maio, E. Meccariello, and S. A. Naimpally, “A natural functor for hyperspaces,” Topology Proceedings, vol. 29, no. 2, pp. 385–410, 2005. View at Zentralblatt MATH · View at MathSciNet
  14. G. Beer and S. Levi, “Pseudometrizable bornological convergence is Attouch-Wets convergence,” Journal of Convex Analysis, vol. 15, no. 2, pp. 439–453, 2008. View at Zentralblatt MATH · View at MathSciNet
  15. G. Beer, C. Costantini, and S. Levi, “Bornological convergence and shields,” Mediterranean Journal of Mathematics, pp. 1–32, 2011. View at Publisher · View at Google Scholar
  16. S. Naimpally and B. D. Warrack:, Proximity Spaces, Cambridge University Press, London, UK, 2008.
  17. A. Di Concilio, “Proximity: a powerful tool in extension theory, function spaces, hyperspaces, boolean algebras and point-free geometry,” in Beyond Topology, F. Mynard and E. Elliott, Eds., vol. 486 of Contemporary Mathematics, pp. 89–112, American Mathematical Society, Providence, RI, USA, 2009. View at Zentralblatt MATH
  18. S. Naimpally, Proximity Approach to Problems in Topology and Analysis, Oldenbourg, München, Germany, 2009.
  19. S. A. Naimpally, “Graph topology for function spaces,” Transactions of the American Mathematical Society, vol. 123, pp. 267–272, 1966. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet