About this Journal Submit a Manuscript Table of Contents
Abstract and Applied Analysis
Volume 2013 (2013), Article ID 425784, 5 pages
http://dx.doi.org/10.1155/2013/425784
Research Article

Approximate Cubic Lie Derivations

1Faculty of Management, University of Primorska, Cankarjeva 5, 6104 Koper, Slovenia
2Faculty of Logistics, University of Maribor, Mariborska Cesta 7, 3000 Celje, Slovenia

Received 11 April 2013; Accepted 27 June 2013

Academic Editor: Janusz Brzdek

Copyright © 2013 Ajda Fošner and Maja Fošner. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. M. Ulam, Problems in Modern Mathematics, John Wiley & Sons, New York, NY, USA, 1964. View at MathSciNet
  2. D. H. Hyers, “On the stability of the linear functional equation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 27, pp. 222–224, 1941. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  3. T. Aoki, “On the stability of the linear transformation in Banach spaces,” Journal of the Mathematical Society of Japan, vol. 2, pp. 64–66, 1950.
  4. T. M. Rassias, “On the stability of the linear mapping in Banach spaces,” Proceedings of the American Mathematical Society, vol. 72, no. 2, pp. 297–300, 1978. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  5. D. H. Hyers, G. Isac, and T. M. Rassias, Stability of Functional Equations in Several Variables, Birkhäuser, Boston, Mass, USA, 1998. View at Publisher · View at Google Scholar · View at MathSciNet
  6. S.-M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis, vol. 48 of Springer Optimization and Its Applications, Springer, New York, NY, USA, 2011. View at Publisher · View at Google Scholar · View at MathSciNet
  7. K.-W. Jun and H.-M. Kim, “The generalized Hyers-Ulam-Rassias stability of a cubic functional equation,” Journal of Mathematical Analysis and Applications, vol. 274, no. 2, pp. 267–278, 2002. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  8. A. Bodaghi, I. A. Alias, and M. H. Ghahramani, “Approximately cubic functional equations and cubic multipliers,” Journal of Inequalities and Applications, vol. 2011, articlie 53, 2011. View at Publisher · View at Google Scholar · View at MathSciNet
  9. M. E. Gordji, S. K. Gharetapeh, J. M. Rassias, and S. Zolfaghari, “Solution and stability of a mixed type additive, quadratic, and cubic functional equation,” Advances in Difference Equations, vol. 2009, pp. 1–17, 2009.
  10. M. Eshaghi Gordji, S. Zolfaghari, J. M. Rassias, and M. B. Savadkouhi, “Solution and stability of a mixed type cubic and quartic functional equation in quasi-Banach spaces,” Abstract and Applied Analysis, vol. 2009, Article ID 417473, 14 pages, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  11. K.-W. Jun, H.-M. Kim, and I.-S. Chang, “On the Hyers-Ulam stability of an Euler-Lagrange type cubic functional equation,” Journal of Computational Analysis and Applications, vol. 7, no. 1, pp. 21–33, 2005. View at Zentralblatt MATH · View at MathSciNet
  12. A. Najati, “Hyers-Ulam-Rassias stability of a cubic functional equation,” Bulletin of the Korean Mathematical Society, vol. 44, no. 4, pp. 825–840, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  13. T. Z. Xu, J. M. Rassias, and W. X. Xu, “A generalized mixed type of quartic-cubic-quadratic-additive functional equations,” Ukrainian Mathematical Journal, vol. 63, no. 3, pp. 461–479, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  14. M. Eshaghi Gordji, S. Kaboli Gharetapeh, M. B. Savadkouhi, M. Aghaei, and T. Karimi, “On cubic derivations,” International Journal of Mathematical Analysis, vol. 4, no. 49–52, pp. 2501–2514, 2010. View at Zentralblatt MATH · View at MathSciNet
  15. S. Y. Yang, A. Bodaghi, and K. A. M. Atan, “Approximate cubic *-derivations on Banach *-algebras,” Abstract and Applied Analysis, vol. 2012, Article ID 684179, 12 pages, 2012. View at Publisher · View at Google Scholar · View at MathSciNet
  16. B. Hayati, M. E. Gordji, M. B. Savadkouhi, and M. Bidkham, “Stability of ternary cubic derivations on ternary Frèchet algebras,” Australian Journal of Basic and Applied Sciences, vol. 5, pp. 1224–1235, 2011.
  17. St. Czerwik, “On the stability of the quadratic mapping in normed spaces,” Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, vol. 62, pp. 59–64, 1992. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  18. S. Kurepa, “On the quadratic functional,” Publications de l'Institut Mathématique de l'Académie Serbe des. Sciences, vol. 13, pp. 57–72, 1961. View at MathSciNet
  19. Z. Moszner, “Sur les définitions différentes de la stabilité des équations fonctionnelles,” Aequationes Mathematicae, vol. 68, no. 3, pp. 260–274, 2004. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  20. D. G. Bourgin, “Approximately isometric and multiplicative transformations on continuous function rings,” Duke Mathematical Journal, vol. 16, pp. 385–397, 1949. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  21. G. Maksa and Z. Páles, “Hyperstability of a class of linear functional equations,” Acta Mathematica. Academiae Paedagogicae Nyíregyháziensis, vol. 17, no. 2, pp. 107–112, 2001. View at Zentralblatt MATH · View at MathSciNet
  22. E. Gselmann, “Hyperstability of a functional equation,” Acta Mathematica Hungarica, vol. 124, no. 1-2, pp. 179–188, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  23. Gy. Maksa, K. Nikodem, and Zs. Páles, “Results on t-Wright convexity,” L'Académie des Sciences. Comptes Rendus Mathématiques, vol. 13, no. 6, pp. 274–278, 1991. View at MathSciNet
  24. N. Brillouët-Belluot, J. Brzdęk, and K. Ciepliński, “On some recent developments in Ulam's type stability,” Abstract and Applied Analysis, vol. 2012, Article ID 716936, 41 pages, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  25. J. Brzdȩk, “Hyperstability of the Cauchy equation on restricted domains,” Acta Mathematica Hungarica, 2013. View at Publisher · View at Google Scholar
  26. M. Piszczek, “Remark on hyperstability of the general linear equation,” Aequationes Mathematicae, 2013. View at Publisher · View at Google Scholar
  27. A. Najati, “The generalized Hyers-Ulam-Rassias stability of a cubic functional equation,” Turkish Journal of Mathematics, vol. 31, no. 4, pp. 395–408, 2007. View at Zentralblatt MATH · View at MathSciNet