About this Journal Submit a Manuscript Table of Contents
Abstract and Applied Analysis
Volume 2013 (2013), Article ID 428793, 7 pages
http://dx.doi.org/10.1155/2013/428793
Research Article

Positive Solutions for the Initial Value Problem of Fractional Evolution Equations

1Department of Mathematics, Northwest Normal University, Lanzhou 730070, China
2Science College, Gansu Agricultural University, Lanzhou 730070, China

Received 9 December 2012; Accepted 19 February 2013

Academic Editor: Changbum Chun

Copyright © 2013 He Yang and Yue Liang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, A Wiley-Interscience Publication, John Wiley & Sons, New York, NY, USA, 1993. View at Zentralblatt MATH · View at MathSciNet
  2. I. Podlubny, Fractional Differential Equations, vol. 198 of Mathematics in Science and Engineering, Academic Press, San Diego, Calif, USA, 1999. View at Zentralblatt MATH · View at MathSciNet
  3. A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, vol. 204 of North-Holland Mathematics Studies, Elsevier Science B.V., Amsterdam, The Netherlands, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  4. V. Lakshmikantham, S. Leela, and J. Devi, Theory of Fractional Dynamic Systems, Cambridge Scientific Publishers, Cambridge, UK, 2009.
  5. K. Diethelm, The Analysis of Fractional Differential Equations, vol. 2004 of Lecture Notes in Mathematics, Springer, Berlin, Germany, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  6. R. P. Agarwal, M. Belmekki, and M. Benchohra, “A survey on semilinear differential equations and inclusions involving Riemann-Liouville fractional derivative,” Advances in Difference Equations, vol. 2009, Article ID 981728, 47 pages, 2009. View at Zentralblatt MATH · View at MathSciNet
  7. R. P. Agarwal, M. Benchohra, and S. Hamani, “A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions,” Acta Applicandae Mathematicae, vol. 109, no. 3, pp. 973–1033, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  8. R. P. Agarwal, V. Lakshmikantham, and J. J. Nieto, “On the concept of solution for fractional differential equations with uncertainty,” Nonlinear Analysis. Theory, Methods & Applications, vol. 72, no. 6, pp. 2859–2862, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  9. M. M. El-Borai, “Some probability densities and fundamental solutions of fractional evolution equations,” Chaos, Solitons and Fractals, vol. 14, no. 3, pp. 433–440, 2002. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  10. M. M. El-Borai, “The fundamental solutions for fractional evolution equations of parabolic type,” Journal of Applied Mathematics and Stochastic Analysis, no. 3, pp. 197–211, 2004. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  11. M. M. El-Borai, “Semigroups and some nonlinear fractional differential equations,” Applied Mathematics and Computation, vol. 149, no. 3, pp. 823–831, 2004. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  12. M. El-Borai, K. El-Nadi, and E. El-Akabawy, “Fractional evolution equations with nonlocal conditions,” International Journal of Applied Mathematics and Mechanics, vol. 4, no. 6, pp. 1–12, 2008.
  13. Y. Zhou and F. Jiao, “Nonlocal Cauchy problem for fractional evolution equations,” Nonlinear Analysis. Real World Applications, vol. 11, no. 5, pp. 4465–4475, 2010. View at Publisher · View at Google Scholar · View at MathSciNet
  14. J. Wang and Y. Zhou, “A class of fractional evolution equations and optimal controls,” Nonlinear Analysis. Real World Applications, vol. 12, no. 1, pp. 262–272, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  15. Y. Zhou and F. Jiao, “Existence of mild solutions for fractional neutral evolution equations,” Computers & Mathematics with Applications, vol. 59, no. 3, pp. 1063–1077, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  16. J. Wang, Y. Zhou, and W. Wei, “A class of fractional delay nonlinear integrodifferential controlled systems in Banach spaces,” Communications in Nonlinear Science and Numerical Simulation, vol. 16, no. 10, pp. 4049–4059, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  17. Z. Tai and X. Wang, “Controllability of fractional-order impulsive neutral functional infinite delay integrodifferential systems in Banach spaces,” Applied Mathematics Letters, vol. 22, no. 11, pp. 1760–1765, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  18. A. Debbouche and D. Baleanu, “Controllability of fractional evolution nonlocal impulsive quasilinear delay integro-differential systems,” Computers & Mathematics with Applications, vol. 62, no. 3, pp. 1442–1450, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  19. G. M. Mophou, “Existence and uniqueness of mild solutions to impulsive fractional differential equations,” Nonlinear Analysis. Theory, Methods & Applications, vol. 72, no. 3-4, pp. 1604–1615, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  20. R.-N. Wang, T.-J. Xiao, and J. Liang, “A note on the fractional Cauchy problems with nonlocal initial conditions,” Applied Mathematics Letters, vol. 24, no. 8, pp. 1435–1442, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  21. P. Sobolevskii, “Equations of parabolic type in a Banach space,” American Mathematics Society Translations. Series 2, vol. 49, pp. 1–62, 1966.
  22. H. Amann, “Periodic solutions of semilinear parabolic equations,” in Nonlinear Analysis, pp. 1–29, Academic Press, New York, NY, USA, 1978. View at Zentralblatt MATH · View at MathSciNet
  23. A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, vol. 44 of Applied Mathematical Sciences, Springer, New York, NY, USA, 1983. View at Publisher · View at Google Scholar · View at MathSciNet
  24. H. Liu and J.-C. Chang, “Existence for a class of partial differential equations with nonlocal conditions,” Nonlinear Analysis. Theory, Methods & Applications, vol. 70, no. 9, pp. 3076–3083, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  25. K. Deimling, Nonlinear Functional Analysis, Springer, Berlin, Germany, 1985. View at MathSciNet
  26. D. Guo, V. Lakshmikantham, and X. Liu, Nonlinear Integral Equations in Abstract Spaces, vol. 373 of Mathematics and Its Applications, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1996. View at MathSciNet
  27. J. Liang and T.-J. Xiao, “Solvability of the Cauchy problem for infinite delay equations,” Nonlinear Analysis. Theory, Methods & Applications, vol. 58, no. 3-4, pp. 271–297, 2004. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  28. H. Amann, “Nonlinear operators in ordered Banach spaces and some applications to nonlinear boundary value problems,” in Nonlinear Operators and the Calculus of Variations, vol. 543 of Lecture Notes in Mathematics, pp. 1–55, Springer, Berlin, Germany, 1976. View at Zentralblatt MATH · View at MathSciNet
  29. Y. Li, “Existence and asymptotic stability of periodic solution for evolution equations with delays,” Journal of Functional Analysis, vol. 261, no. 5, pp. 1309–1324, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet