About this Journal Submit a Manuscript Table of Contents
Abstract and Applied Analysis
Volume 2013 (2013), Article ID 432509, 6 pages
http://dx.doi.org/10.1155/2013/432509
Research Article

Solvability of Some Boundary Value Problems for Fractional -Laplacian Equation

Department of Mathematics, China University of Mining and Technology, Xuzhou 221116, China

Received 4 July 2013; Accepted 9 September 2013

Academic Editor: Chuanzhi Bai

Copyright © 2013 Taiyong Chen and Wenbin Liu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Metzler and J. Klafter, “Boundary value problems for fractional diffusion equations,” Physica A, vol. 278, no. 1-2, pp. 107–125, 2000. View at Publisher · View at Google Scholar · View at MathSciNet
  2. H. Scher and E. W. Montroll, “Anomalous transit-time dispersion in amorphous solids,” Physical Review B, vol. 12, no. 6, pp. 2455–2477, 1975. View at Publisher · View at Google Scholar · View at Scopus
  3. F. Mainardi, “Fractional diffusive waves in viscoelastic solids,” in Nonlinear Waves in Solids, J. L. Wegner and F. R. Norwood, Eds., Fairfield, 1995.
  4. K. Diethelm and A. D. Freed, “On the solution of nonlinear fractional order differential equations used in the modeling of viscoplasticity,” in Scientific Computing in Chemical Engineering II: Computational Fluid Dynamics, Reaction Engineering and Molecular Properties, F. Keil, W. Mackens, H. Voss, and J. Werther, Eds., Springer, Heidelberg, Germany, 1999.
  5. L. Gaul, P. Klein, and S. Kemple, “Damping description involving fractional operators,” Mechanical Systems and Signal Processing, vol. 5, no. 2, pp. 81–88, 1991. View at Publisher · View at Google Scholar
  6. W. G. Glockle and T. F. Nonnenmacher, “A fractional calculus approach to self-similar protein dynamics,” Biophysical Journal, vol. 68, pp. 46–53, 1995. View at Publisher · View at Google Scholar
  7. F. Mainardi, “Fractional calculus: some basic problems in continuum and statistical mechanics,” in Fractals and Fractional Calculus in Continuum Mechanics, A. Carpinteri and F. Mainardi, Eds., vol. 378 of CISM Courses and Lectures, pp. 291–348, Springer, New York, NY, USA, 1997. View at MathSciNet
  8. R. Metzler, W. Schick, H. G. Kilian, and T. F. Nonnenmacher, “Relaxation in filled polymers: a fractional calculus approach,” Journal of Chemical Physics, vol. 103, no. 16, pp. 7180–7186, 1995. View at Publisher · View at Google Scholar
  9. E. Pereira, C. A. Monje, B. M. Vinagre, and F. Gordillho, “Matlab toolbox for the analysis of fractional order systems with hard nonlinearities,” in Proceedings of the First IFAC Workshop on Fractional Differentiation and Its Applications (FDA '04), pp. 214–219, Bordeaux, France, July 2004.
  10. A. Babakhani and V. Daftardar-Gejji, “Existence of positive solutions of nonlinear fractional differential equations,” Journal of Mathematical Analysis and Applications, vol. 278, no. 2, pp. 434–442, 2003. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  11. D. Delbosco and L. Rodino, “Existence and uniqueness for a nonlinear fractional differential equation,” Journal of Mathematical Analysis and Applications, vol. 204, no. 2, pp. 609–625, 1996. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  12. A. A. Kilbas and J. J. Trujillo, “Differential equations of fractional order: methods, results and problems-I,” Applicable Analysis, vol. 78, no. 1-2, pp. 153–192, 2001. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  13. A. A. Kilbas and J. J. Trujillo, “Differential equations of fractional order: methods, results and problems-II,” Applicable Analysis, vol. 81, no. 2, pp. 435–493, 2002. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  14. R. P. Agarwal, D. O'Regan, and S. Staněk, “Positive solutions for Dirichlet problems of singular nonlinear fractional differential equations,” Journal of Mathematical Analysis and Applications, vol. 371, no. 1, pp. 57–68, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  15. Z. Bai, “On solutions of some fractional m-point boundary value problems at resonance,” Electronic Journal of Qualitative Theory of Differential Equations, vol. 37, pp. 1–15, 2010. View at MathSciNet
  16. M. Benchohra, S. Hamani, and S. K. Ntouyas, “Boundary value problems for differential equations with fractional order and nonlocal conditions,” Nonlinear Analysis: Theory, Methods & Applications, vol. 71, no. 7-8, pp. 2391–2396, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  17. Z. Bai and H. Lü, “Positive solutions for boundary value problem of nonlinear fractional differential equation,” Journal of Mathematical Analysis and Applications, vol. 311, no. 2, pp. 495–505, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  18. M. El-Shahed and J. J. Nieto, “Nontrivial solutions for a nonlinear multi-point boundary value problem of fractional order,” Computers & Mathematics with Applications, vol. 59, no. 11, pp. 3438–3443, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  19. W. Jiang, “The existence of solutions to boundary value problems of fractional differential equations at resonance,” Nonlinear Analysis: Theory, Methods & Applications, vol. 74, no. 5, pp. 1987–1994, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  20. N. Kosmatov, “A boundary value problem of fractional order at resonance,” Electronic Journal of Differential Equations, no. 135, pp. 1–10, 2010. View at Zentralblatt MATH · View at MathSciNet
  21. X. Su, “Boundary value problem for a coupled system of nonlinear fractional differential equations,” Applied Mathematics Letters, vol. 22, no. 1, pp. 64–69, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  22. L. S. Leibenson, “General problem of the movement of a compressible fluid in a porous medium,” Izvestiia Akademii Nauk Kirgizskoĭ SSSR, pp. 7–10, 1983 (Russian). View at MathSciNet
  23. T. Chen, W. Liu, and C. Yang, “Antiperiodic solutions for Liénard-type differential equation with p-Laplacian operator,” Boundary Value Problems, vol. 2010, Article ID 194824, 12 pages, 2010. View at Publisher · View at Google Scholar · View at MathSciNet
  24. D. Jiang and W. Gao, “Upper and lower solution method and a singular boundary value problem for the one-dimensional p-Laplacian,” Journal of Mathematical Analysis and Applications, vol. 252, no. 2, pp. 631–648, 2000. View at Publisher · View at Google Scholar · View at MathSciNet
  25. L. F. Lian and W. G. Ge, “The existence of solutions of m-point p-Laplacian boundary value problems at resonance,” Acta Mathematicae Applicatae Sinica, vol. 28, no. 2, pp. 288–295, 2005. View at MathSciNet
  26. B. Liu and J. S. Yu, “Existence of solutions for the periodic boundary value problems with p-Laplacian operator,” Journal of Systems Science and Mathematical Sciences, vol. 23, no. 1, pp. 76–85, 2003. View at MathSciNet
  27. J. J. Zhang, W. B. Liu, J. B. Ni, and T. Y. Chen, “Multiple periodic solutions of p-Laplacian equation with one-side Nagumo condition,” Journal of the Korean Mathematical Society, vol. 45, no. 6, pp. 1549–1559, 2008. View at Publisher · View at Google Scholar · View at MathSciNet
  28. T. Chen and W. Liu, “An anti-periodic boundary value problem for the fractional differential equation with a p-Laplacian operator,” Applied Mathematics Letters, vol. 25, no. 11, pp. 1671–1675, 2012. View at Publisher · View at Google Scholar · View at MathSciNet
  29. S. Yao, G. Wang, Z. Li, and L. Yu, “Positive solutions for three-point boundary value problem of fractional differential equation with p-Laplacian operator,” Discrete Dynamics in Nature and Society, vol. 2013, Article ID 376938, 7 pages, 2013. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  30. K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley & Sons, New York, NY, USA, 1993. View at MathSciNet
  31. I. Podlubny, Fractional Differential Equations, vol. 198 of Mathematics in Science and Engineering, Academic Press, San Diego, Calif, USA, 1999. View at MathSciNet
  32. S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach Science, Yverdon, Switzerland, 1993. View at MathSciNet
  33. A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, The Netherlands, 2006.
  34. R. Manásevich and J. Mawhin, “Periodic solutions for nonlinear systems with p-Laplacian-like operators,” Journal of Differential Equations, vol. 145, no. 2, pp. 367–393, 1998. View at Publisher · View at Google Scholar · View at MathSciNet