About this Journal Submit a Manuscript Table of Contents
Abstract and Applied Analysis
Volume 2013 (2013), Article ID 436062, 11 pages
http://dx.doi.org/10.1155/2013/436062
Research Article

Analysis of Feature Fusion Based on HIK SVM and Its Application for Pedestrian Detection

1School of Information Science and Technology, Xiamen University, Xiamen, Fujian Province 361005, China
2Fujian Key Laboratory of the Brain-Like Intelligent Systems (Xiamen University), Xiamen, Fujian Province 361005, China
3Department of Computer Science and Engineering, Yuan Ze University, Taoyuan 320, Taiwan

Received 5 March 2013; Accepted 1 April 2013

Academic Editor: Zhenkun Huang

Copyright © 2013 Song-Zhi Su and Shu-Yuan Chen. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Gerónimo, A. M. López, A. D. Sappa, and T. Graf, “Survey of pedestrian detection for advanced driver assistance systems,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 32, no. 7, pp. 1239–1258, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. P. Dollar, C. Wojek, B. Schiele, and P. Perona, “Pedestrian detection: an evaluation of the state of the art,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 34, no. 4, pp. 743–761, 2012. View at Publisher · View at Google Scholar
  3. P. Viola and M. J. Jones, “Robust real-time face detection,” International Journal of Computer Vision, vol. 57, no. 2, pp. 137–154, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR '05), pp. 886–893, San Diego, Calif, USA, June 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Mohan, C. Papageorgiou, and T. Poggio, “Example-based object detection in images by components,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 23, no. 4, pp. 349–361, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. B. Wu and R. Nevatia, “Detection and tracking of multiple, partially occluded humans by Bayesian combination of edgelet based part detectors,” International Journal of Computer Vision, vol. 75, no. 2, pp. 247–266, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. B. Leibe, A. Leonardis, and B. Schiele, “Robust object detection with interleaved categorization and segmentation,” International Journal of Computer Vision, vol. 77, no. 1–3, pp. 259–289, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. L. Zhao and C. E. Thorpe, “Stereo- and neural network-based pedestrian detection,” IEEE Transactions on Intelligent Transportation Systems, vol. 1, no. 3, pp. 148–154, 2000. View at Scopus
  9. D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” International Journal of Computer Vision, vol. 60, no. 2, pp. 91–110, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan, “Object detection with discriminatively trained part-based models,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 32, no. 9, pp. 1627–1645, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. Q. Zhu, M. C. Yeh, K. T. Cheng, and S. Avidan, “Fast human detection using a cascade of histograms of oriented gradients,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR '06), vol. 2, pp. 1491–1498, June 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. O. Tuzel, F. Porikli, and P. Meer, “Pedestrian detection via classification on Riemannian manifolds,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 30, no. 10, pp. 1713–1727, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. C. Wojek, S. Walk, and B. Schiele, “Multi-Cue onboard pedestrian detection,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPR '09), pp. 794–801, June 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. Y. T. Chen and C. S. Chen, “Fast human detection using a novel boosted cascading structure with meta stages,” IEEE Transactions on Image Processing, vol. 17, no. 8, pp. 1452–1464, 2008. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  15. X. Wang, X. Han, and S. Yan, “A HOG-LBP human detector with partial occlusion handling,” in Proceedings of the IEEE 12th International Conference on Computer Vision (ICCV '09), pp. 32–39, Kyoto, Japan, October 2009. View at Publisher · View at Google Scholar
  16. S. Maji, A. C. Berg, and J. Maliks, “Classification using intersection kernel support vector machines is efficient,” in Proceedings of the 26th IEEE Conference on Computer Vision and Pattern Recognition (CVPR '08), pp. 1–8, Anchorage, Alaska, USA, June 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. J. X. Wu, “Efficient HIK SVM learning for image classification,” IEEE Transactions on Image Processing, vol. 21, no. 10, pp. 4442–4453, 2012. View at Publisher · View at Google Scholar · View at MathSciNet
  18. D. Vazquez, A. M. Lopez, and D. Ponsa, “Unsupervised domain adaptation of virtual and real worlds for pedestrian detection,” in Proceedings of the 21st International Conference on Pattern Recognition (ICPR '12), pp. 3492–3495, Tsukuba, Japan, 2012.
  19. V. Jain and E. Learned-Miller, “Online domain adaptation of a pre-trained cascade of classifiers,” in Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR '11), 2011.
  20. T. Ahonen, A. Hadid, and M. Pietikäinen, “Face description with local binary patterns: application to face recognition,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 28, no. 12, pp. 2037–2041, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. M. J. Swain and D. H. Ballard, “Color indexing,” International Journal of Computer Vision, vol. 7, no. 1, pp. 11–32, 1991. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Vedaldi and A. Zisserman, “Efficient additive kernels via explicit feature maps,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 34, no. 3, pp. 480–492, 2012. View at Publisher · View at Google Scholar
  23. C. C. Chang and C. J. Lin, “LIBSVM: a library for support vector machines,” 2001, http://www.csie.ntu.edu.tw/~cjlin/libsvm.