About this Journal Submit a Manuscript Table of Contents
Abstract and Applied Analysis
Volume 2013 (2013), Article ID 462535, 5 pages
http://dx.doi.org/10.1155/2013/462535
Research Article

Analytical Solutions of the One-Dimensional Heat Equations Arising in Fractal Transient Conduction with Local Fractional Derivative

1College of Science, Hebei United University, Tangshan 063009, China
2College of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, China
3Department of Mathematics, University of Salerno, Via Ponte don Melillo, Fisciano, 84084 Salerno, Italy
4Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran
5International Institute for Symmetry Analysis and Mathematical Modelling, Department of Mathematical Sciences, North-West University, Mafikeng Campus, Private Bag X 2046, Mmabatho 2735, South Africa
6Department of Mathematics and Mechanics, China University of Mining and Technology, Xuzhou, Jiangsu 221008, China

Received 26 September 2013; Accepted 17 October 2013

Academic Editor: Abdon Atangana

Copyright © 2013 Ai-Ming Yang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Adomian, Nonlinear Stochastic Operator Equations, Academic Press, Orlando, Fla, USA, 1986. View at MathSciNet
  2. G. Adomian, Solving Frontier Problems of Physics: The Decomposition Method, vol. 60 of Fundamental Theories of Physics, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1994. View at MathSciNet
  3. G. Adomian, “A review of the decomposition method in applied mathematics,” Journal of Mathematical Analysis and Applications, vol. 135, no. 2, pp. 501–544, 1988. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  4. M. Tatari and M. Dehghan, “The use of the Adomian decomposition method for solving multipoint boundary value problems,” Physica Scripta, vol. 73, no. 6, pp. 672–676, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. A.-M. Wazwaz, “Adomian decomposition method for a reliable treatment of the Bratu-type equations,” Applied Mathematics and Computation, vol. 166, no. 3, pp. 652–663, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  6. V. Daftardar-Gejji and H. Jafari, “Adomian decomposition: a tool for solving a system of fractional differential equations,” Journal of Mathematical Analysis and Applications, vol. 301, no. 2, pp. 508–518, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  7. E. Larsson, “A domain decomposition method for the Helmholtz equation in a multilayer domain,” SIAM Journal on Scientific Computing, vol. 20, no. 5, pp. 1713–1731, 1999. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  8. M. Tatari, M. Dehghan, and M. Razzaghi, “Application of the Adomian decomposition method for the Fokker-Planck equation,” Mathematical and Computer Modelling, vol. 45, no. 5-6, pp. 639–650, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  9. J. A. T. Machado, D. Baleanu, and A. C. Luo, Nonlinear Dynamics of Complex Systems: Applications in Physical, Biological and Financial Systems, Springer, New York, NY, USA, 2011.
  10. J. Klafter, S. C. Lim, and R. Metzler, Fractional Dynamics: Recent Advances, World Scientific Publishing, Singapore, 2012. View at MathSciNet
  11. F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity, Imperial College Press, London, UK, 2010. View at Publisher · View at Google Scholar · View at MathSciNet
  12. D. Baleanu, K. Diethelm, E. Scalas, and J. J. Trujillo, Fractional Calculus: Models and Numerical Methods, vol. 3 of Series on Complexity, Nonlinearity and Chaos, World Scientific Publishing, Hackensack, NJ, USA, 2012. View at Publisher · View at Google Scholar · View at MathSciNet
  13. K. S. Hedrih, “Analytical mechanics of fractional order discrete system vibrations,” Advances in Nonlinear Sciences, vol. 3, pp. 101–148, 2011.
  14. K. Hedrih, “Modes of the homogeneous chain dynamics,” Signal Processing, vol. 86, no. 10, pp. 2678–2702, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. K. Hedrih, “Dynamics of coupled systems,” Nonlinear Analysis: Hybrid Systems, vol. 2, no. 2, pp. 310–334, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  16. C. Li and Y. Wang, “Numerical algorithm based on Adomian decomposition for fractional differential equations,” Computers & Mathematics with Applications, vol. 57, no. 10, pp. 1672–1681, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  17. H. Jafari and V. Daftardar-Gejji, “Solving a system of nonlinear fractional differential equations using Adomian decomposition,” Journal of Computational and Applied Mathematics, vol. 196, no. 2, pp. 644–651, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  18. S. Momani and Z. Odibat, “Analytical solution of a time-fractional Navier-Stokes equation by Adomian decomposition method,” Applied Mathematics and Computation, vol. 177, no. 2, pp. 488–494, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  19. S. S. Ray and R. K. Bera, “Analytical solution of a fractional diffusion equation by Adomian decomposition method,” Applied Mathematics and Computation, vol. 174, no. 1, pp. 329–336, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  20. Q. Wang, “Numerical solutions for fractional KdV-Burgers equation by Adomian decomposition method,” Applied Mathematics and Computation, vol. 182, no. 2, pp. 1048–1055, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  21. H. Jafari and V. Daftardar-Gejji, “Solving linear and nonlinear fractional diffusion and wave equations by Adomian decomposition,” Applied Mathematics and Computation, vol. 180, no. 2, pp. 488–497, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  22. M. Safari, D. D. Ganji, and M. Moslemi, “Application of He's variational iteration method and Adomian's decomposition method to the fractional KdV-Burgers-Kuramoto equation,” Computers & Mathematics with Applications, vol. 58, no. 11-12, pp. 2091–2097, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  23. M. El-Shahed, “Adomian decomposition method for solving Burgers equation with fractional derivative,” Journal of Fractional Calculus, vol. 24, pp. 23–28, 2003. View at Zentralblatt MATH · View at MathSciNet
  24. J. Hristov, “Transient flow of a generalized second grade fluid due to a constant surface shear stress: an approximate integral-balance solution,” International Review of Chemical Engineering, vol. 3, no. 6, pp. 802–809, 2011.
  25. J. Hristov, “Heat-balance integral to fractional (half-time) heat diffusion sub-model,” Thermal Science, vol. 14, no. 2, pp. 291–316, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. H. Jafari, H. Tajadodi, N. Kadkhoda, and D. Baleanu, “Fractional subequation method for Cahn-Hilliard and Klein-Gordon equations,” Abstract and Applied Analysis, vol. 2013, Article ID 587179, 5 pages, 2013. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  27. A. Atangana and A. Secer, “The time-fractional coupled-Korteweg-de-Vries equations,” Abstract and Applied Analysis, vol. 2013, Article ID 947986, 8 pages, 2013. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  28. A. Atangana and A. K. Kılıçman, “Analytical solutions of boundary values problem of 2D and 3D poisson and biharmonic equations by homotopy decomposition method,” Abstract and Applied Analysis, vol. 2013, Article ID 380484, 9 pages, 2013. View at Publisher · View at Google Scholar
  29. X.-J. Yang, Local Fractional Functional Analysis and Its Applications, Asian Academic Publisher, Hong Kong, 2011.
  30. X.-J. Yang, Advanced Local Fractional Calculus and Its Applications, World Science Publisher, New York, NY, USA, 2012.
  31. K. M. Kolwankar and A. D. Gangal, “Local fractional Fokker-Planck equation,” Physical Review Letters, vol. 80, no. 2, pp. 214–217, 1998. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  32. A. Carpinteri and A. Sapora, “Diffusion problems in fractal media defined on Cantor sets,” Zeitschrift für Angewandte Mathematik und Mechanik, vol. 90, no. 3, pp. 203–210, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. A. K. Golmankhaneh, V. Fazlollahi, and D. Baleanu, “Newtonian mechanics on fractals subset of real-line,” Romania Reports in Physics, vol. 65, pp. 84–93, 2013.
  34. X.-J. Yang, H. M. Srivastava, J.-H. He, and D. Baleanu, “Cantor-type cylindrical-coordinate method for differential equations with local fractional derivatives,” Physics Letters A, vol. 377, no. 28–30, pp. 1696–1700, 2013. View at Publisher · View at Google Scholar · View at MathSciNet
  35. X.-J. Yang, D. Baleanu, and J. A. Tenreiro Machado, “Systems of Navier-Stokes equations on Cantor sets,” Mathematical Problems in Engineering, vol. 2013, Article ID 769724, 8 pages, 2013. View at Publisher · View at Google Scholar · View at MathSciNet
  36. X.-J. Yang, D. Baleanu, and J. A. Tenreiro Machado, “Mathematical aspects of Heisenberg uncertainty principle within local fractional Fourier analysis,” Boundary Value Problems, vol. 2013, no. 1, pp. 131–146, 2013. View at Publisher · View at Google Scholar
  37. X.-J. Yang, D. Baleanu, and W. P. Zhong, “Approximate solutions for diffusion equations on cantor space-time,” Proceedings of the Romanian Academy A, vol. 14, no. 2, pp. 127–133, 2013.
  38. X.-J. Yang, D. Baleanu, M. P. Lazarević, and M. S. Cajić, “Fractal boundary value problems for integral and differential equations with local fractional operators,” Thermal Science, 2013. View at Publisher · View at Google Scholar
  39. A. M. Yang, Y. Z. Zhang, and Y. Long, “The Yang-Fourier transforms to heat-conduction in a semi-infinite fractal bar,” Thermal Science, vol. 17, no. 3, pp. 707–713, 2013. View at Publisher · View at Google Scholar
  40. C. F. Liu, S. S. Kong, and S. J. Yuan, “Reconstructive schemes for variational iteration method within Yang-Laplace transform with application to fractal heat conduction problem,” Thermal Science, vol. 17, no. 3, pp. 715–721, 2013. View at Publisher · View at Google Scholar