About this Journal Submit a Manuscript Table of Contents
Abstract and Applied Analysis
Volume 2013 (2013), Article ID 481976, 6 pages
http://dx.doi.org/10.1155/2013/481976
Research Article

An Adaptive Estimation Scheme for Open-Circuit Voltage of Power Lithium-Ion Battery

School of Control Science and Engineering, Shandong University, Jinan 250061, China

Received 29 October 2013; Accepted 8 December 2013

Academic Editor: Qi-Ru Wang

Copyright © 2013 Yun Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Tian, M. N. Hong, and M. G. Ouyang, “An experimental study and nonlinear modeling of discharge I-V behavior of valve-regulated lead-acid batteries,” IEEE Transactions on Energy Conversion, vol. 24, no. 2, pp. 452–458, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Armand and J.-M. Tarascon, “Building better batteries,” Nature, vol. 451, no. 7179, pp. 652–657, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. V. Ramadesigan, P. W. C. Northrop, S. De, S. Santhanagopalan, R. D. Braatz, and V. R. Subramanian, “Modeling and simulation of lithium-ion batteries from a systems engineering perspective,” Journal of the Electrochemical Society, vol. 159, no. 3, pp. R31–R45, 2012. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Lee, J. Kim, J. Lee, and B. H. Cho, “State-of-charge and capacity estimation of lithium-ion battery using a new open-circuit voltage versus state-of-charge,” Journal of Power Sources, vol. 185, no. 1-2, pp. 1367–1373, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. N. A. Windarko and J. Choi, “SOC estimation based on OCV for NiMH batteries using an improved Takacs model,” Journal of Power Electronics, vol. 10, no. 2, pp. 181–186, 2010. View at Scopus
  6. S. Abu-Sharkh and D. Doerffel, “Rapid test and non-linear model characterisation of solid-state lithium-ion batteries,” Journal of Power Sources, vol. 130, no. 1-2, pp. 266–274, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. J. H. Kim and B. H. Cho, “State-of-charge estimation and state-of-health prediction of a Li-ion degraded battery based on an EKF combined with a per-unit system,” IEEE Transactions on Vehicular Technology, vol. 60, no. 9, pp. 4249–4260, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. B. S. Bhangu, P. Bentley, D. A. Stone, and C. M. Bingham, “Nonlinear observers for predicting state-of-charge and state-of-health of lead-acid batteries for hybrid-electric vehicles,” IEEE Transactions on Vehicular Technology, vol. 54, no. 3, pp. 783–794, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. F. Zhang, G. J. Liu, L. J. Fang, and H. G. Wang, “Estimation of battery state of charge with H observer: applied to a robot for inspecting power transmission lines,” IEEE Transactions on Industrial Electronics, vol. 59, no. 2, pp. 1086–1095, 2012. View at Publisher · View at Google Scholar · View at Scopus
  10. G. Lüders and K. S. Narendra, “An adaptive observer and identifier for a linear system,” IEEE Transactions on Automatic Control, vol. 18, no. 5, pp. 496–499, 1973. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  11. J. J. E. Slotine and W. P. Li, Applied Nonlinear Control, Prentice Hall, New Jersey, NJ, USA, 1991.