About this Journal Submit a Manuscript Table of Contents
Abstract and Applied Analysis
Volume 2013 (2013), Article ID 493406, 15 pages
http://dx.doi.org/10.1155/2013/493406
Research Article

Numerical Algorithms for the Fractional Diffusion-Wave Equation with Reaction Term

Department of Mathematics, Shanghai University, Shanghai 200444, China

Received 24 April 2013; Revised 24 June 2013; Accepted 24 June 2013

Academic Editor: Juan J. Trujillo

Copyright © 2013 Hengfei Ding and Changpin Li. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. Barkai, R. Metzler, and J. Klafter, “From continuous time random walks to the fractional Fokker-Planck equation,” Physical Review E, vol. 61, no. 1, pp. 132–138, 2000. View at Publisher · View at Google Scholar · View at MathSciNet
  2. D. A. Benson, S. W. Wheatcraft, and M. M. Meerschaert, “Application of a fractional advection-dispersion equation,” Water Resources Research, vol. 36, no. 6, pp. 1403–1412, 2000. View at Publisher · View at Google Scholar
  3. R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000.
  4. F. Mainardi, “Fractional calculus: some basic problems in continuum and statistical mechanics,” in Fractals and Fractional Calculus in Continuum Mechanics, A. Carpinteri and F. Mainardi, Eds., Springer, New York, NY, USA, 1997.
  5. K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley & Sons, New York, NY, USA, 1993. View at MathSciNet
  6. A. I. Saichev and G. M. Zaslavsky, “Fractional kinetic equations: solutions and applications,” Chaos, vol. 7, no. 4, pp. 753–764, 1997. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  7. S. B. Yuste, L. Acedo, and K. Lindenberg, “Reaction front in an A+BC reactionsubdiffusion process,” Physical Review E, vol. 69, no. 3, part 2, Article ID 036126, 2004.
  8. S. B. Yuste and K. Lindenberg, “Subdiffusion-limited A+A reactions,” Physical Review Letters, vol. 87, no. 11, Article ID 118301, 2001. View at Publisher · View at Google Scholar
  9. M. Cui, “Compact finite difference method for the fractional diffusion equation,” Journal of Computational Physics, vol. 228, no. 20, pp. 7792–7804, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  10. C.-M. Chen, F. Liu, I. Turner, and V. Anh, “A Fourier method for the fractional diffusion equation describing sub-diffusion,” Journal of Computational Physics, vol. 227, no. 2, pp. 886–897, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  11. C. P. Li, A. Chen, and J. J. Ye, “Numerical approaches to fractional calculus and fractional ordinary differential equation,” Journal of Computational Physics, vol. 230, no. 9, pp. 3352–3368, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  12. F. Liu, C. Yang, and K. Burrage, “Numerical method and analytic technique of the modified anomalous subdiffusion equation with a nonlinear source term,” Journal of Computational and Applied Mathematics, vol. 231, no. 1, pp. 160–176, 2009. View at Publisher · View at Google Scholar · View at MathSciNet
  13. E. Sousa, “Finite difference approximations for a fractional advection diffusion problem,” Journal of Computational Physics, vol. 228, no. 11, pp. 4038–4054, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  14. E. Sousa, “Numerical approximations for fractional diffusion equations via splines,” Computers & Mathematics with Applications, vol. 62, no. 3, pp. 938–944, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  15. H. Wang and K. Wang, “An O(Nlog2N) alternating-direction finite difference method for two-dimensional fractional diffusion equations,” Journal of Computational Physics, vol. 230, no. 21, pp. 7830–7839, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  16. S. B. Yuste and L. Acedo, “An explicit finite difference method and a new von Neumann-type stability analysis for fractional diffusion equations,” SIAM Journal on Numerical Analysis, vol. 42, no. 5, pp. 1862–1874, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  17. V. J. Ervin, N. Heuer, and J. P. Roop, “Numerical approximation of a time dependent, nonlinear, space-fractional diffusion equation,” SIAM Journal on Numerical Analysis, vol. 45, no. 2, pp. 572–591, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  18. G. J. Fix and J. P. Roop, “Least squares finite-element solution of a fractional order two-point boundary value problem,” Computers & Mathematics with Applications, vol. 48, no. 7-8, pp. 1017–1033, 2004. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  19. J. P. Roop, “Computational aspects of FEM approximation of fractional advection dispersion equations on bounded domains in R2,” Journal of Computational and Applied Mathematics, vol. 193, no. 1, pp. 243–268, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  20. C. P. Li, Z. G. Zhao, and Y. Q. Chen, “Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion,” Computers & Mathematics with Applications, vol. 62, no. 3, pp. 855–875, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  21. H. Zhang, F. Liu, and V. Anh, “Galerkin finite element approximation of symmetric space-fractional partial differential equations,” Applied Mathematics and Computation, vol. 217, no. 6, pp. 2534–2545, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  22. Y. Y. Zheng, C. P. Li, and Z. G. Zhao, “A fully discrete discontinuous Galerkin method for nonlinear fractional Fokker-Planck equation,” Mathematical Problems in Engineering, vol. 2010, Article ID 279038, 26 pages, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  23. Q. Yang, F. Liu, and I. Turner, “Numerical methods for fractional partial differential equations with Riesz space fractional derivatives,” Applied Mathematical Modelling, vol. 34, no. 1, pp. 200–218, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  24. Q. Yang, F. Liu, and I. Turner, “Computationally efficient numerical methods for time and space fractional Fokker-Planck equations,” Physica Scripta, vol. 2009, Article ID 014026, 2009. View at Publisher · View at Google Scholar
  25. C. P. Li, F. H. Zeng, and F. Liu, “Spectral approximations to the fractional integral and derivative,” Fractional Calculus and Applied Analysis, vol. 15, no. 3, pp. 383–406, 2012. View at Publisher · View at Google Scholar · View at MathSciNet
  26. X. Li and C. Xu, “A space-time spectral method for the time fractional diffusion equation,” SIAM Journal on Numerical Analysis, vol. 47, no. 3, pp. 2108–2131, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  27. H. F. Ding and C. P. Li, “Mixed spline function method for reaction-subdiusion equations,” Journal of Computational Physics, vol. 242, pp. 103–123, 2013. View at Publisher · View at Google Scholar
  28. F. Mainardi, “Fractional relaxation-oscillation and fractional diffusion-wave phenomena,” Chaos, Solitons and Fractals, vol. 7, no. 9, pp. 1461–1477, 1996. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  29. J. Q. Murillo and S. B. Yuste, “An explicit difference method for solving fractional diffusion and diffusion-wave equations in the Caputo form,” Journal of Computational and Nonlinear Dynamics, vol. 6, no. 2, 6 pages, 2011. View at Publisher · View at Google Scholar
  30. I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, Calif, USA, 1999. View at MathSciNet
  31. D. K. Salkuyeh, “On the finite difference approximation to the convection-diffusion equation,” Applied Mathematics and Computation, vol. 179, no. 1, pp. 79–86, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  32. M. Li, T. Tang, and B. Fornberg, “A compact fourth-order finite difference scheme for the steady incompressible Navier-Stokes equations,” International Journal for Numerical Methods in Fluids, vol. 20, no. 10, pp. 1137–1151, 1995. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  33. L. Su, W. Wang, and Q. Xu, “Finite difference methods for fractional dispersion equations,” Applied Mathematics and Computation, vol. 216, no. 11, pp. 3329–3334, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet