About this Journal Submit a Manuscript Table of Contents
Abstract and Applied Analysis
Volume 2013 (2013), Article ID 501081, 12 pages
http://dx.doi.org/10.1155/2013/501081
Research Article

A Study on Vibration Characteristics and Stability of the Ambulance Nonlinear Damping System

Institute of Medical Equipment, Academy of Military Medical Sciences, 106 Wandong Road, Hedong District, Tianjin 300161, China

Received 28 December 2012; Revised 25 March 2013; Accepted 22 April 2013

Academic Editor: Chunrui Zhang

Copyright © 2013 Meng Yang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. L. Lee and N. C. Perkins, “Nonlinear oscillations of suspended cables containing a two-to-one internal resonance,” Nonlinear Dynamics, vol. 3, no. 6, pp. 465–490, 1992. View at Publisher · View at Google Scholar · View at Scopus
  2. J. Li, X. Guo, K. Yang, and Y. Yan, “Study on the nonlinear vibration of axially moving cylindrical shells made from composites,” Chinese Journal of Solid Mechanics, vol. 32, no. 2, pp. 176–185, 2011. View at Scopus
  3. Z. Xin, S. Dagang, S. Yang, et al., “Analysis of damping vibration reduction performance of viscoelastic shocker absorber under low frequency and heavy loading,” China Mechanical Engineering, vol. 23, no. 14, pp. 1651–1656, 2012.
  4. L. Xinye, Z. Lijuan, and Z. Huabiao, “Forced vibration of a gyroscope system and its delayed feedback control,” Journal of Vibration and Shock, vol. 31, no. 9, pp. 63–68, 2012.
  5. T. Inoue and Y. Ishida, “Nonlinear forced oscillation in a magnetically levitated system: the effect of the time delay of the electromagnetic force,” Nonlinear Dynamics, vol. 52, no. 1-2, pp. 103–113, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  6. B. Y. Moon and B. S. Kang, “Dynamic analysis of harmonically excited non-linear system using multiple scales method,” KSME International Journal, vol. 16, no. 6, pp. 819–828, 2002. View at Scopus
  7. P. Xian and Z. Shixiang, “Nonlinear resonance response analysis of a kind of passive isolation system with quasi-zero stiffness,” Journal of Human University (Natural Sciences), vol. 38, no. 8, pp. 34–39, 2011.
  8. Y. Wang, B. Zheng, and C. Zhang, “An algebraic criterion of zero solutions of some dynamic systems,” Abstract and Applied Analysis, vol. 2012, Article ID 956359, 13 pages, 2012. View at Zentralblatt MATH
  9. S. Chen, X. Xinxi, G. Zhenhai, et al., “Analysis on two-level damping efficiency and recumbent comfort for tracked emergency ambulance,” Journal of Vibration, Measurement & Diagnosis, vol. 32, no. 5, pp. 754–857, 2012.
  10. L. Shuang, L. Yangshu, L. Bin, et al., “Parametric vibration analysis and control in coupling rotating mechanical drive system,” China Mechanical Engineering, vol. 23, no. 12, pp. 1461–1466, 2012.
  11. L. Haoran, Z. Zhanlong, S. Peiming, et al., “Stability control of a coupled nonlinear torsional vibration system,” Journal of Vibration and Shock, vol. 30, no. 9, pp. 140–144, 2011.
  12. G. Zhu and J. Wei, “Stability and hopf bifurcation analysis of coupled optoeletronic feedback loops,” Abstract and Applied Analysis, vol. 2013, Article ID 918943, 11 pages, 2013.
  13. R. W. Ibrahim, “Stability and stabilizing of fractional complex lorenz system,” Abstract and Applied Science, vol. 2013, Article ID 127103, 13 pages, 2013.
  14. J. Ma, B. Zheng, and C. Zhang, “A matrix method for determining eigenvalues and stability of singular neutral delay-differential systems,” Abstract and Applied Analysis, vol. 2012, Article ID 749847, 11 pages, 2012. View at Zentralblatt MATH