About this Journal Submit a Manuscript Table of Contents
Abstract and Applied Analysis
Volume 2013 (2013), Article ID 508315, 7 pages
http://dx.doi.org/10.1155/2013/508315
Research Article

Algorithms and Applications in Grass Growth Monitoring

1Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, A11 Datun Road, Chaoyang District, Beijing 100101, China
2College of Geography and Tourism, Chongqing Normal University, No. 12 Tianchen Road, Shapingba District, Chongqing 400047, China
3State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, China

Received 25 February 2013; Accepted 29 March 2013

Academic Editor: Craig Caulfield

Copyright © 2013 Jun Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Hudson Dunn and K. M. de Beurs, “Land surface phenology of North American mountain environments using moderate resolution imaging spectroradiometer data,” Remote Sensing of Environment, vol. 115, no. 5, pp. 1220–1233, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. C. G. Rosenzweig, D. J. Casassa, A. Karoly et al., Climate Change 2007: Impacts, Adaptation and Vulnerability: Contribution of Working Group II To the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, vol. 4, Cambridge University Press, 2007.
  3. T. R. Karl, J. M. Melillo, T. C. Peterson, and S. J. Hassol, Global Climate Change Impacts in the United States, Cambridge University Press, 2009.
  4. K. Soudani, G. le Maire, E. Dufrêne et al., “Evaluation of the onset of green-up in temperate deciduous broadleaf forests derived from Moderate Resolution Imaging Spectroradiometer (MODIS) data,” Remote Sensing of Environment, vol. 112, no. 5, pp. 2643–2655, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. E. Ivits, M. Cherlet, G. Tóth et al., “Combining satellite derived phenology with climate data for climate change impact assessment,” Global and Planetary Change, vol. 88-89, pp. 85–97, 2012. View at Publisher · View at Google Scholar
  6. K. Zhu and M. Wan, A Productive Science—Phenology, Public Science, 1963.
  7. T. H. Sparks and P. D. Carey, “The responses of species to climate over two centuries: an analysis of the Marsham phenological record, 1736–1947,” Journal of Ecology, vol. 83, no. 2, pp. 321–329, 1995. View at Scopus
  8. T. Rötzer and F.-M. Chmielewski, “Phenological maps of Europe,” Climate Research, vol. 18, pp. 249–257, 2001. View at Publisher · View at Google Scholar
  9. Q. Ge, J. Dai, J. Zheng et al., “Advances in first bloom dates and increased occurrences of yearly second blooms in eastern China since the 1960s: further phenological evidence of climate warming,” Ecological Research, vol. 26, no. 4, pp. 713–723, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. I. Chuine, G. Cambon, and P. Comtois, “Scaling phenology from the local to the regional level: advances from species-specific phenological models,” Global Change Biology, vol. 6, no. 8, pp. 943–952, 2000. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. Huang, D. Jiang, D. Zhuang, H. Ren, and Z. Yao, “Filling gaps in vegetation index measurements for crop growth monitoring,” African Journal of Agricultural Research, vol. 6, no. 12, pp. 2920–2930, 2011.
  12. J. N. Hird and G. J. McDermid, “Noise reduction of NDVI time series: an empirical comparison of selected techniques,” Remote Sensing of Environment, vol. 113, no. 1, pp. 248–258, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. X. Y. Zhang, M. A. Friedl, C. B. Schaaf et al., “Monitoring vegetation phenology using MODIS,” Remote Sensing of Environment, vol. 84, no. 3, pp. 471–475, 2003.
  14. B. C. Reed, J. F. Brown, D. VanderZee, T. R. Loveland, J. W. Merchant, and D. O. Ohlen, “Measuring phenological variability from satellite imagery,” Journal of Vegetation Science, vol. 5, no. 5, pp. 703–714, 1994.
  15. N. Delbart, L. Kergoat, T. L. Toan, J. Lhermitte, and G. Picard, “Determination of phenological dates in boreal regions using normalized difference water index,” Remote Sensing of Environment, vol. 97, no. 1, pp. 26–38, 2005.
  16. L. Liang, M. D. Schwartz, and S. Fei, “Validating satellite phenology through intensive ground observation and landscape scaling in a mixed seasonal forest,” Remote Sensing of Environment, vol. 115, no. 1, pp. 143–157, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. X. Q. Chen and J. Li, “Relationships between Leymus chinensis phenology and meteorological factors in Inner Mongolia grasslands,” Acta Ecologica Sinica, vol. 29, no. 10, pp. 5280–5290, 2009. View at Scopus
  18. X. Y. Zhang, M. A. Friedl, and C. B. Schaaf, “Global vegetation phenology from Moderate Resolution Imaging Spectroradiometer (MODIS): evaluation of global patterns and comparison with in situ measurements,” Journal of Geophysical Research, vol. 111, no. 4, 2006. View at Publisher · View at Google Scholar
  19. S. Ganguly, M. A. Friedl, B. Tan, X. Zhang, and M. Verma, “Land surface phenology from MODIS: characterization of the collection 5 global land cover dynamics product,” Remote Sensing of Environment, vol. 114, no. 8, pp. 1805–1816, 2010. View at Publisher · View at Google Scholar · View at Scopus