About this Journal Submit a Manuscript Table of Contents
Abstract and Applied Analysis
Volume 2013 (2013), Article ID 524514, 9 pages
http://dx.doi.org/10.1155/2013/524514
Research Article

On Exact Series Solution of Strongly Coupled Mixed Parabolic Problems

1Departamento de Matemàtica Aplicada, Universitat Politècnica de València, Camino de Vera S/N, 46022 Valencia, Spain
2Instituto de Matemàtica Multidisciplinar, Universitat Politècnica de València, Camino de Vera S/N, 46022 Valencia, Spain
3Departamento de Matemàtica e Informàtica, Universidad Jaume I de Castellón, Avenida de Vicent Sos Baynat S/N, 12071 Castellón de la Plana, Spain

Received 25 March 2013; Accepted 24 June 2013

Academic Editor: Juan Carlos Cortés López

Copyright © 2013 Vicente Soler et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. H. Alexander and D. E. Manolopoulos, “A stable linear reference potencial algorithm for solution of the quantum close-coupled equations in molecular scattering theory,” Journal of Chemical Physics, vol. 86, pp. 2044–2050, 1987.
  2. V. S. Melezhik, I. V. Puzynin, T. P. Puzynina, and L. N. Somov, “Numerical solution of a system of integro-differential equations arising from the quantum mechanical three-body problem with Coulomb interaction,” Journal of Computational Physics, vol. 54, no. 2, pp. 221–236, 1984. View at Publisher · View at Google Scholar · View at MathSciNet
  3. W. T. Reid, Ordinary Differential Equations, John Wiley & Sons, New York, NY, USA, 1971. View at MathSciNet
  4. R. D. Levine, M. Shapiro, and B. Johnson, “Transition probabilities in molecular collisions: computational studies of rotational excitation,” Journal of Chemical Physics, vol. 53, pp. 1755–1766, 1970.
  5. J. V. Lill, T. G. Schmalz, and J. C. Light, “Imbedded matrix Green's functions in atomic and molecular scattering theory,” The Journal of Chemical Physics, vol. 78, no. 7, pp. 4456–4463, 1983. View at Publisher · View at Google Scholar · View at MathSciNet
  6. F. Mrugala and D. Secrest, “The generalized log-derivate method for inelastic and reactive collisions,” Journal of Chemical Physics, vol. 78, pp. 5954–5961, 1983.
  7. T. Hueckel, M. Borsetto, and A. Peano, Modelling of Coupled Thermo-Elastoplastic Hydraulic Response of Clays Subjected to Nuclear Waste Heat, John Wiley & Sons, New York, NY, USA, 1987.
  8. J. Crank, The Mathematics of Diffusion, Oxford University Press, 2nd edition, 1995.
  9. M. D. Mikhailov and M. N. Osizik, Unifield Analysis and Solutions of Heat and Mass Diffusion, John Wiley & Sons, New York, NY, USA, 1984.
  10. I. Stakgold, Green's Functions and Boundary Value Problems, John Wiley & Sons, New York, NY, USA, 1979. View at MathSciNet
  11. S. L. Campbell and C. D. Meyer Jr., Generalized Inverses of Linear Transformations, Pitman, London, UK, 1979.
  12. L. Jódar, E. Navarro, and J. A. Martin, “Exact and analytic-numerical solutions of strongly coupled mixed diffusion problems,” Proceedings of the Edinburgh Mathematical Society II, vol. 43, no. 2, pp. 269–293, 2000. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  13. L. Jódar and E. Ponsoda, “Continuous numerical solutions and error bounds for time dependent systems of partial differential equations: mixed problems,” Computers & Mathematics with Applications, vol. 29, no. 8, pp. 63–71, 1995. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  14. E. Navarro, E. Ponsoda, and L. Jódar, “A matrix approach to the analytic-numerical solution of mixed partial differential systems,” Computers & Mathematics with Applications, vol. 30, no. 1, pp. 99–109, 1995. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  15. G. H. Golub and C. F. Van Loan, Matrix Computation, The Johns Hopkins University Press, Baltimore, Md, USA, 1989.
  16. C. R. Rao and S. K. Mitra, Generalized Inverse of Matrices and Its Applications, John Wiley & Sons, New York, NY, USA, 1971. View at MathSciNet
  17. E. Navarro, L. Jódar, and M. V. Ferrer, “Constructing eigenfunctions of strongly coupled parabolic boundary value systems,” Applied Mathematics Letters, vol. 15, no. 4, pp. 429–434, 2002. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  18. E. L. Ince, Ordinary Differential Equations, Dover, New York, NY, USA, 1962.
  19. E. A. Coddington and N. Levinson, Theory of Ordinary Differential Equations, McGraw-Hill, New York, NY, USA, 1967.
  20. V. Soler, E. Navarro, and M. V. Ferrer, “Invariant properties of eigenfunctions for multicondition boundary value problems,” Applied Mathematics Letters, vol. 19, no. 12, pp. 1308–1312, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  21. N. Dunford and J. Schwartz, Linear Operators, Part I, Interscience, New York, NY, USA, 1977.