About this Journal Submit a Manuscript Table of Contents
Abstract and Applied Analysis
Volume 2013 (2013), Article ID 525461, 12 pages
http://dx.doi.org/10.1155/2013/525461
Research Article

Influence of Relapse in a Giving Up Smoking Model

Department of Applied Mathematics, Lanzhou University of Technology, Lanzhou, Gansu 730050, China

Received 8 November 2012; Revised 7 December 2012; Accepted 20 December 2012

Academic Editor: Sanyi Tang

Copyright © 2013 Hai-Feng Huo and Cheng-Cheng Zhu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. G. Ruan and W. D. Wang, “Dynamical behavior of an epidemic model with a nonlinear incidence rate,” Journal of Differential Equations, vol. 188, no. 1, pp. 135–163, 2003. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  2. A. Korobeinikov, “Global properties of infectious disease models with nonlinear incidence,” Bulletin of Mathematical Biology, vol. 69, no. 6, pp. 1871–1886, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. M. de la Sen and S. Alonso-Quesada, “Vaccination strategies based on feedback control techniques for a general SEIR epidemic model,” Applied Mathematics and Computation, vol. 218, no. 7, pp. 3888–3904, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  4. M. de La Sen, R. P. Agarwal, A. Ibeas, and S. Alonso-Quesada, “On a generalized time-varying SEIR epidemic model with mixed point and distributed time-varying delays and combined regular and impulsive vaccination controls,” Advances in Difference Equations, vol. 2010, Article ID 281612, 2010. View at Zentralblatt MATH · View at Scopus
  5. A. M. Lyapunov, The General Problem of the Stability of Motion, Taylor & Francis, London, UK, 1992.
  6. A. Korobeinikov, “Global properties of SIR and SEIR epidemic models with multiple parallel infectious stages,” Bulletin of Mathematical Biology, vol. 71, no. 1, pp. 75–83, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  7. S. M. O'Regan, T. C. Kelly, A. Korobeinikov, M. J. A. O'Callaghan, and A. V. Pokrovskii, “Lyapunov function for SIR and SIRS epidmic models,” Applied Mathematics Letters, vol. 23, pp. 446–448, 2010. View at Publisher · View at Google Scholar
  8. B. Buonomo and S. Rionero, “On the Lyapunov stability for SIRS epidemic models with general nonlinear incidence rate,” Applied Mathematics and Computation, vol. 217, no. 8, pp. 4010–4016, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  9. Z. H. Hu, P. Bi, W. B. Ma, and S. G. Ruan, “Bifurcations of an sirs epidemic model with nonlinear incidence rate,” Discrete and Continuous Dynamical Systems B, vol. 15, no. 1, pp. 93–112, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  10. G. H. Li, W. D. Wang, and Z. Jin, “Global stability of an SEIR epidemic model with constant immigration,” Chaos, Solitons and Fractals, vol. 30, no. 4, pp. 1012–1019, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  11. A. Korobeinikov, “Global properties of basic virus dynamics models,” Bulletin of Mathematical Biology, vol. 66, no. 4, pp. 879–883, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. M. O. Souza and J. P. Zubelli, “Global stability for a class of virus models with cytotoxic T lymphocyte immune response and antigenic variation,” Bulletin of Mathematical Biology, vol. 73, no. 3, pp. 609–625, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  13. H. F. Huo, S. J. Dang, and Y. N. Li, “Stability of a two-strain tuberculosis model with general contact rate,” Abstract and Applied Analysis, vol. 2010, Article ID 293747, 31 pages, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  14. C. Castillo-Chavez and B. J. Song, “Dynamical models of tuberculosis and their applications,” Mathematical Biosciences and Engineering, vol. 1, pp. 361–404, 2004. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  15. H. F. Huo and L. X. Feng, “Global stability for an HIV/AIDS epidemic model with different latent stages and treatment,” Applied Mathematical Modelling, vol. 37, no. 3, pp. 1480–1489, 2013. View at Publisher · View at Google Scholar
  16. R. Xu, “Global stability of an HIV-1 infection model with saturation infection and intracellular delay,” Journal of Mathematical Analysis and Applications, vol. 375, no. 1, pp. 75–81, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  17. C. Castillo-Garsow, G. Jordan-Salivia, and A. Rodriguez-Herrera, “Mathematical models for the dynamics of tobacco use, recovery, and replase,” Tech. Rep. BU-1505-M, Cornell University, 2000.
  18. G. Zaman, “Qualitative behavior of giving up smoking models,” Bulletin of the Malaysian Mathematical Sciences Society, vol. 34, no. 2, pp. 403–415, 2011. View at Zentralblatt MATH · View at Scopus
  19. G. Zaman, “Optimal campaign in the smoking dynamics, computation and mathematical methods in medicine,” vol. 2011, Article ID 163834, 9 pages, 2011. View at Publisher · View at Google Scholar
  20. R. Qesmi, J. Wu, J. H. Wu, and J. M. Heffernan, “Influence of backward bifurcation in a model of hepatitis B and C viruses,” Mathematical Biosciences, vol. 224, no. 2, pp. 118–125, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  21. P. van den Driessche and J. Watmough, “Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission,” Mathematical Biosciences, vol. 180, pp. 29–48, 2002. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  22. J. P. LaSalle, The Stability of Dynamical Systems, Regional Conference Series in Applied Mathematics, SIAM, Philadelphia, Pa, USA, 1976.
  23. World Health Statistics, 2010, http://www.who.int/.
  24. WHO Report of the Global Tobacco Epidemic, 2011, http://www.who.int/.