About this Journal Submit a Manuscript Table of Contents
Abstract and Applied Analysis
Volume 2013 (2013), Article ID 548975, 8 pages
http://dx.doi.org/10.1155/2013/548975
Research Article

Solutions and Conservation Laws of a (2+1)-Dimensional Boussinesq Equation

International Institute for Symmetry Analysis and Mathematical Modelling, Department of Mathematical Sciences, North-West University, Mafikeng Campus, Private Bag X 2046, Mmabatho 2735, South Africa

Received 6 July 2013; Accepted 19 August 2013

Academic Editor: Maria Gandarias

Copyright © 2013 Letlhogonolo Daddy Moleleki and Chaudry Masood Khalique. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Gu, H. Hu, and Z. Zhou, Darboux Transformations in Integrable Systems, vol. 26 of Mathematical Physics Studies, Springer, Dordrecht, Netherlands, 2005. View at Zentralblatt MATH · View at MathSciNet
  2. M. J. Ablowitz and P. A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, vol. 149 of London Mathematical Society Lecture Note Series, Cambridge University Press, Cambridge, UK, 1991. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  3. R. Hirota, The Direct Method in Soliton Theory, vol. 155 of Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge, UK, 2004. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  4. S. Liu, Z. Fu, S. Liu, and Q. Zhao, “Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations,” Physics Letters A, vol. 289, no. 1-2, pp. 69–74, 2001. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  5. A.-M. Wazwaz, “The tanh and the sine-cosine methods for compact and noncompact solutions of the nonlinear Klein-Gordon equation,” Applied Mathematics and Computation, vol. 167, no. 2, pp. 1179–1195, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  6. Sirendaoreji and S. Jiong, “Auxiliary equation method for solving nonlinear partial differential equations,” Physics Letters A, vol. 309, no. 5-6, pp. 387–396, 2003. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  7. G. W. Bluman and S. Kumei, Symmetries and Differential Equations, vol. 81 of Applied Mathematical Sciences, Springer, New York, NY, USA, 1989. View at MathSciNet
  8. P. J. Olver, Applications of Lie Groups to Differential Equations, vol. 107 of Graduate Texts in Mathematics, Springer, New York, NY, USA, 2nd edition, 1993. View at Publisher · View at Google Scholar · View at MathSciNet
  9. N. H. Ibragimov, CRC Handbook of Lie Group Analysis of Differential Equations, vol. 1–3, CRC Press, Boca Raton, Fla, USA, 1994–1996. View at Zentralblatt MATH · View at MathSciNet
  10. C. M. Khalique and A. R. Adem, “Exact solutions of a generalized (3+1)-dimensional Kadomtsev-Petviashvili equation using Lie symmetry analysis,” Applied Mathematics and Computation, vol. 216, no. 10, pp. 2849–2854, 2010. View at Publisher · View at Google Scholar · View at MathSciNet
  11. K. R. Adem and C. M. Khalique, “Exact solutions and conservation laws of a (2+1)-dimensional nonlinear KP-BBM equation,” Abstract and Applied Analysis, vol. 2013, Article ID 791863, 5 pages, 2013. View at Publisher · View at Google Scholar · View at MathSciNet
  12. M. Wang and Y. Zhou, “The periodic wave solutions for the Klein-Gordon-Schrödinger equations,” Physics Letters A, vol. 318, no. 1-2, pp. 84–92, 2003. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  13. J.-H. He and X.-H. Wu, “Exp-function method for nonlinear wave equations,” Chaos, Solitons & Fractals, vol. 30, no. 3, pp. 700–708, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  14. S. Lai, Y. Wu, and Y. Zhou, “Some physical structures for the (2+1)-dimensional Boussinesq water equation with positive and negative exponents,” Computers & Mathematics with Applications, vol. 56, no. 2, pp. 339–345, 2008. View at Publisher · View at Google Scholar · View at MathSciNet
  15. Y. Chen, Z. Yan, and H. Zhang, “New explicit solitary wave solutions for (2+1)-dimensional Boussinesq equation and (3+1)-dimensional KP equation,” Physics Letters A, vol. 307, no. 2-3, pp. 107–113, 2003. View at Publisher · View at Google Scholar · View at MathSciNet
  16. G. Imed and B. Abderrahmen, “Numerical solution of the (2+1)-dimensional Boussinesq equation with initial condition by homotopy perturbation method,” Applied Mathematical Sciences, vol. 6, no. 117–120, pp. 5993–6002, 2012. View at MathSciNet
  17. C. Liu and Z. Dai, “Exact periodic solitary wave solutions for the (2+1)-dimensional Boussinesq equation,” Journal of Mathematical Analysis and Applications, vol. 367, no. 2, pp. 444–450, 2010. View at Publisher · View at Google Scholar · View at MathSciNet
  18. A.-M. Wazwaz, “Non-integrable variants of Boussinesq equation with two solitons,” Applied Mathematics and Computation, vol. 217, no. 2, pp. 820–825, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  19. P. D. Lax, “Integrals of nonlinear equations of evolution and solitary waves,” Communications on Pure and Applied Mathematics, vol. 21, pp. 467–490, 1968. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  20. T. B. Benjamin, “The stability of solitary waves,” Proceedings of the Royal Society A, vol. 328, pp. 153–183, 1972. View at Publisher · View at Google Scholar · View at MathSciNet
  21. R. J. Knops and C. A. Stuart, “Quasiconvexity and uniqueness of equilibrium solutions in nonlinear elasticity,” Archive for Rational Mechanics and Analysis, vol. 86, no. 3, pp. 233–249, 1984. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  22. R. J. LeVeque, Numerical Methods for Conservation Laws, Lectures in Mathematics, Birkhäuser, Basel, Switzerland, 2nd edition, 1992. View at Publisher · View at Google Scholar · View at MathSciNet
  23. E. Godlewski and P.-A. Raviart, Numerical Approximation of Hyperbolic Systems of Conservation Laws, vol. 118 of Applied Mathematical Sciences, Springer, Berlin, Germany, 1996. View at MathSciNet
  24. A. Sjöberg, “Double reduction of PDEs from the association of symmetries with conservation laws with applications,” Applied Mathematics and Computation, vol. 184, no. 2, pp. 608–616, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  25. A. H. Bokhari, A. Y. Al-Dweik, A. H. Kara, F. M. Mahomed, and F. D. Zaman, “Double reduction of a nonlinear (2+1) wave equation via conservation laws,” Communications in Nonlinear Science and Numerical Simulation, vol. 16, no. 3, pp. 1244–1253, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  26. G. L. Caraffini and M. Galvani, “Symmetries and exact solutions via conservation laws for some partial differential equations of mathematical physics,” Applied Mathematics and Computation, vol. 219, no. 4, pp. 1474–1484, 2012. View at Publisher · View at Google Scholar · View at MathSciNet
  27. N. A. Kudryashov, “Simplest equation method to look for exact solutions of nonlinear differential equations,” Chaos, Solitons & Fractals, vol. 24, no. 5, pp. 1217–1231, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  28. N. K. Vitanov, “Application of simplest equations of Bernoulli and Riccati kind for obtaining exact traveling-wave solutions for a class of PDEs with polynomial nonlinearity,” Communications in Nonlinear Science and Numerical Simulation, vol. 15, no. 8, pp. 2050–2060, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  29. N. H. Ibragimov, “A new conservation theorem,” Journal of Mathematical Analysis and Applications, vol. 333, no. 1, pp. 311–328, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet