About this Journal Submit a Manuscript Table of Contents
Abstract and Applied Analysis
Volume 2013 (2013), Article ID 562140, 13 pages
http://dx.doi.org/10.1155/2013/562140
Research Article

Numerical Solution of the Fractional Partial Differential Equations by the Two-Dimensional Fractional-Order Legendre Functions

College of Computer, National University of Defense Technology, Changsha 410073, China

Received 13 May 2013; Revised 8 September 2013; Accepted 8 September 2013

Academic Editor: Santanu Saha Ray

Copyright © 2013 Fukang Yin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Z. Odibat and S. Momani, “Numerical methods for nonlinear partial differential equations of fractional order,” Applied Mathematical Modelling, vol. 32, no. 1, pp. 28–39, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Momani and Z. Odibat, “Analytical approach to linear fractional partial differential equations arising in fluid mechanics,” Physics Letters A, vol. 355, no. 4-5, pp. 271–279, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. Z. Odibat and S. Momani, “Modified homotopy perturbation method: application to quadratic Riccati differential equation of fractional order,” Chaos, Solitons & Fractals, vol. 36, no. 1, pp. 167–174, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  4. S. H. Hosseinnia, A. Ranjbar, and S. Momani, “Using an enhanced homotopy perturbation method in fractional differential equations via deforming the linear part,” Computers & Mathematics with Applications, vol. 56, no. 12, pp. 3138–3149, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  5. O. Abdulaziz, I. Hashim, and S. Momani, “Solving systems of fractional differential equations by homotopy-perturbation method,” Physics Letters A, vol. 372, no. 4, pp. 451–459, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  6. J. H. He, “Approximate analytical solution for seepage flow with fractional derivatives in porous media,” Computer Methods in Applied Mechanics and Engineering, vol. 167, no. 1-2, pp. 57–68, 1998. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  7. J. H. He, “Variational iteration method—a kind of non-linear analytical technique: some examples,” International Journal of Non-Linear Mechanics, vol. 34, no. 4, pp. 699–708, 1999. View at Scopus
  8. J. H. He, “Variational iteration method—some recent results and new interpretations,” Journal of Computational and Applied Mathematics, vol. 207, no. 1, pp. 3–17, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  9. E. H. Doha, A. H. Bhrawy, and S. S. Ezz-Eldien, “A Chebyshev spectral method based on operational matrix for initial and boundary value problems of fractional order,” Computers & Mathematics with Applications, vol. 62, no. 5, pp. 2364–2373, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  10. A. H. Bhrawy and M. M. Al-Shomrani, “A shifted Legendre spectral method for fractional-order multi-point boundary value problems,” Advances in Difference Equations, vol. 2012, article 8, 19 pages, 2012. View at Publisher · View at Google Scholar · View at MathSciNet
  11. M. Maleki, I. Hashim, M. Tavassoli Kajani, and S. Abbasbandy, “An adaptive pseudospectral method for fractional order boundary value problems,” Abstract and Applied Analysis, vol. 2012, Article ID 381708, 19 pages, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  12. D. Baleanu, A. H. Bhrawy, and T. M. Taha, “Two efficient generalized Laguerre spectral algorithms for fractional initial value problems,” Abstract and Applied Analysis, vol. 2013, Article ID 546502, 10 pages, 2013. View at Publisher · View at Google Scholar · View at MathSciNet
  13. A. H. Bhrawy and M. A. Alghamdi, “A new legendre spectral galerkin and pseudo-spectral approximations for fractional initial value problems,” Abstract and Applied Analysis, vol. 2013, Article ID 306746, 10 pages, 2013. View at Publisher · View at Google Scholar
  14. A. Saadatmandi and M. Dehghan, “A new operational matrix for solving fractional-order differential equations,” Computers & Mathematics with Applications, vol. 59, no. 3, pp. 1326–1336, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  15. A. H. Bhrawy, A. S. Alofi, and S. S. Ezz-Eldien, “A quadrature tau method for fractional differential equations with variable coefficients,” Applied Mathematics Letters, vol. 24, no. 12, pp. 2146–2152, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  16. A. H. Bhrawy and A. S. Alofi, “The operational matrix of fractional integration for shifted Chebyshev polynomials,” Applied Mathematics Letters, vol. 26, no. 1, pp. 25–31, 2013. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  17. S. Yüzbasi, “Numerical solution of the Bagley-Torvik equation by the Bessel collocation method,” Mathematical Methods in the Applied Sciences, vol. 36, no. 3, pp. 300–312, 2013. View at Publisher · View at Google Scholar
  18. J. L. Wu, “A wavelet operational method for solving fractional partial differential equations numerically,” Applied Mathematics and Computation, vol. 214, no. 1, pp. 31–40, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  19. A. Saadatmandi and M. Dehghan, “A new operational matrix for solving fractional-order differential equations,” Computers & Mathematics with Applications, vol. 59, no. 3, pp. 1326–1336, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  20. H. Jafari, S. A. Yousefi, M. A. Firoozjaee, S. Momani, and C. M. Khalique, “Application of Legendre wavelets for solving fractional differential equations,” Computers & Mathematics with Applications, vol. 62, no. 3, pp. 1038–1045, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  21. Y. Li, “Solving a nonlinear fractional differential equation using Chebyshev wavelets,” Communications in Nonlinear Science and Numerical Simulation, vol. 15, no. 9, pp. 2284–2292, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  22. A. Ahmadian, M. Suleiman, and S. Salahshour, “An operational matrix based on Legendre polynomials for solving fuzzy fractional-order differential equations,” Abstract and Applied Analysis, vol. 2013, Article ID 505903, 29 pages, 2013. View at Publisher · View at Google Scholar · View at MathSciNet
  23. A. H. Bhrawy, D. Baleanu, L. M. Assas, and J. A. T. Machado, “On a generalized Laguerre operational matrix of fractional integration,” Mathematical Problems in Engineering, Article ID 569286, 7 pages, 2013. View at MathSciNet
  24. A. H. Bhrawy and T. M. Taha, “An operational matrix of fractional integration of the Laguerre polynomials and its application on a semi-infinite interval,” Mathematical Sciences, vol. 6, article 41, 7 pages, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  25. A. H. Bhrawy, M. M. Alghamdi, and T. M. Taha, “A new modified generalized Laguerre operational matrix of fractional integration for solving fractional differential equations on the half line,” Advances in Difference Equations, p. 2012:179, 12, 2012. View at Publisher · View at Google Scholar · View at MathSciNet
  26. S. Kazem, “An integral operational matrix based on Jacobi polynomials for solving fractional-order differential equations,” Applied Mathematical Modelling, vol. 37, no. 3, pp. 1126–1136, 2013. View at Publisher · View at Google Scholar · View at MathSciNet
  27. S. Z. Rida and A. M. Yousef, “On the fractional order Rodrigues formula for the Legendre polynomials,” Advances and Applications in Mathematical Sciences, vol. 10, no. 5, pp. 509–517, 2011. View at Zentralblatt MATH · View at MathSciNet
  28. S. Kazem, S. Abbasbandy, and S. Kumar, “Fractional-order Legendre functions for solving fractional-order differential equations,” Applied Mathematical Modelling, vol. 37, no. 7, pp. 5498–5510, 2013. View at Publisher · View at Google Scholar · View at MathSciNet
  29. I. Podlubny, Fractional Differential Equations, vol. 198, Academic Press, San Diego, Calif, USA, 1999. View at MathSciNet
  30. I. Podlubny, “Geometric and physical interpretation of fractional integration and fractional differentiation,” Fractional Calculus & Applied Analysis, vol. 5, no. 4, pp. 367–386, 2002. View at Zentralblatt MATH · View at MathSciNet
  31. N. Liu and E. B. Lin, “Legendre wavelet method for numerical solutions of partial differential equations,” Numerical Methods for Partial Differential Equations, vol. 26, no. 1, pp. 81–94, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  32. F. Yin, J. Song, X. Cao, and F. Lu, “Couple of the variational iteration method and Legendre wavelets for nonlinear partial differential equations,” Journal of Applied Mathematics, vol. 2013, Article ID 157956, 11 pages, 2013. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  33. G. C. Wu, “Challenge in the variational iteration method—a new approach to identification of the Lagrange multipliers,” Journal of King Saud University, vol. 25, pp. 175–178, 2013. View at Publisher · View at Google Scholar
  34. F. Yin, J. Song, and F. Lu, “A coupled method of Laplace transform and Legendre wavelets for nonlinear Klein-Gordon equations,” Mathematical Methods in the Applied Sciences, 2013. View at Publisher · View at Google Scholar
  35. N. Imran and S. T. Mohyud-Din, “Decomposition method for fractional partial differential equation (PDEs) using Laplace transformation,” International Journal of Physical Sciences, vol. 8, no. 16, pp. 684–688, 2013. View at Publisher · View at Google Scholar
  36. K. A. Gepreel and M. S. Mohamed, “Analytical approximate solution for nonlinear space-time fractional Klein Gordon equation,” Chinese Physics B, vol. 22, no. 1, Article ID 010201, 2013. View at Publisher · View at Google Scholar
  37. A. M. A. El-Sayed, A. Elsaid, and D. Hammad, “A reliable treatment of homotopy perturbation method for solving the nonlinear Klein-Gordon equation of arbitrary (fractional) orders,” Journal of Applied Mathematics, vol. 2012, Article ID 581481, 13 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  38. S. Momani and Z. Odibat, “A novel method for nonlinear fractional partial differential equations: combination of DTM and generalized Taylor’s formula,” Journal of Computational and Applied Mathematics, vol. 220, no. 1-2, pp. 85–95, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  39. J. Song, F. Yin, X. Cao, and F. Lu, “Fractional variational iteration method versus Adomian’s decomposition method in some fractional partial differential equations,” Journal of Applied Mathematics, vol. 2013, Article ID 392567, 10 pages, 2013. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet