About this Journal Submit a Manuscript Table of Contents
Abstract and Applied Analysis
Volume 2013 (2013), Article ID 587179, 5 pages
http://dx.doi.org/10.1155/2013/587179
Research Article

Fractional Subequation Method for Cahn-Hilliard and Klein-Gordon Equations

1Department of Mathematics, University of Mazandaran, P.O. Box 47416-93797, Babolsar, Iran
2Department of Mathematical Sciences, International Institute for Symmetry Analysis and Mathematical Modelling, North-West University, Mafikeng Campus, Private Bag X2046, Mmabatho 2735, South Africa
3Department of Mathematics and Computer Sciences, Faculty of Art and Sciences, Çankaya University, Ankara, Turkey
4Department of Chemical and Materials Engineering, Faculty of Engineering, King Abdulaziz University, P.O. Box 80204, Jeddah 21589, Saudi Arabia
5Institute for Space Sciences, Măgurele, P.O. Box R 76900, Bucharest, Romania

Received 10 December 2012; Accepted 6 January 2013

Academic Editor: Bashir Ahmad

Copyright © 2013 Hossein Jafari et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and some of Their Applications, vol. 198 of Mathematics in Science and Engineering, Academic Press, San Diego, Calif, USA, 1999. View at MathSciNet
  2. S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach Science Publishers, Yverdon, Switzerland, 1993. View at MathSciNet
  3. A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, vol. 204 of North-Holland Mathematics Studies, Elsevier Science B.V., Amsterdam, The Netherlands, 2006. View at MathSciNet
  4. R. L. Magin, Fractional Calculus in Bioengineering, Begell House, Redding, Calif, USA, 2006.
  5. R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific Publishing, River Edge, NJ, USA, 2000. View at Publisher · View at Google Scholar · View at MathSciNet
  6. F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models, Imperial College Press, London, UK, 2010. View at Publisher · View at Google Scholar · View at MathSciNet
  7. D. Baleanu, K. Diethelm, E. Scalas, and J. J. Trujillo, Fractional Calculus: Models and Numerical Methods, vol. 3 of Series on Complexity, Nonlinearity and Chaos, World Scientific Publishing, Hackensack, NJ, USA, 2012. View at Publisher · View at Google Scholar · View at MathSciNet
  8. K. Diethelm, The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type, vol. 2004 of Lecture Notes in Mathematics, Springer, Berlin, Germany, 2010. View at Publisher · View at Google Scholar · View at MathSciNet
  9. M. Klimek, On Solutions of Linear Fractional Differential Equations of a Variational Type, The Publishing Office of Czestochowa University of Technology, Czestochowa, Poland, 2009.
  10. F. Riewe, “Nonconservative Lagrangian and Hamiltonian mechanics,” Physical Review E, vol. 53, no. 2, pp. 1890–1899, 1996. View at Publisher · View at Google Scholar · View at MathSciNet
  11. F. Riewe, “Mechanics with fractional derivatives,” Physical Review E, vol. 55, no. 3, pp. 3581–3592, 1997. View at Publisher · View at Google Scholar · View at MathSciNet
  12. M. Klimek, “Lagrangean and Hamiltonian fractional sequential mechanics,” Czechoslovak Journal of Physics, vol. 52, no. 11, pp. 1247–1253, 2002. View at Publisher · View at Google Scholar · View at MathSciNet
  13. O. P. Agrawal, “Formulation of Euler-Lagrange equations for fractional variational problems,” Journal of Mathematical Analysis and Applications, vol. 272, no. 1, pp. 368–379, 2002. View at Publisher · View at Google Scholar · View at MathSciNet
  14. D. Baleanu and T. Avkar, “Lagrangians with linear velocities within Riemann-Liouville fractional derivatives,” Nuovo Cimento della Societa Italiana di Fisica B, vol. 119, no. 1, pp. 73–79, 2004. View at Scopus
  15. J. G. Lu and G. Chen, “A note on the fractional-order Chen system,” Chaos, Solitons and Fractals, vol. 27, no. 3, pp. 685–688, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. V. Daftardar-Gejji and H. Jafari, “Solving a multi-order fractional differential equation using Adomian decomposition,” Applied Mathematics and Computation, vol. 189, no. 1, pp. 541–548, 2007. View at Publisher · View at Google Scholar · View at MathSciNet
  17. H. Jafari, M. Nazari, D. Baleanu, and C. M. Khalique, “A new approach for solving a system of fractional partial differential equations,” Computers & Mathematics with Applications. In press.
  18. H. Jafari, H. Tajadodi, and D. Baleanu, “A modified variational iteration method for solving fractional Riccati differential equation by Adomian polynomials,” Fractional Calculus and Applied Analysis, vol. 16, pp. 109–122, 2013.
  19. H. Jafari and H. Tajadodi, “He's variational iteration method for solving fractional Riccati differential equation,” International Journal of Differential Equations, vol. 2010, Article ID 764738, 8 pages, 2010. View at MathSciNet
  20. H. Jafari, S. Das, and H. Tajadodi, “Solving a multi-order fractional differential equation using homotopy analysis method,” Journal of King Saud University, vol. 23, no. 2, pp. 151–155, 2011.
  21. H. Jafari, N. Kadkhoda, H. Tajadodi, and S. A. Hosseini Matikolai, “Homotopy perturbation pade technique for solving fractional riccati differential equations,” International Journal of Nonlinear Sciences and Numerical Simulation, vol. 11, pp. 271–275, 2010.
  22. Q. Huang, G. Huang, and H. Zhan, “A finite element solution for the fractional advection-dispersion equation,” Advances in Water Resources, vol. 31, no. 12, pp. 1578–1589, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. Z. Odibat and S. Momani, “Modified homotopy perturbation method: application to quadratic Riccati differential equation of fractional order,” Chaos, Solitons & Fractals, vol. 36, no. 1, pp. 167–174, 2008. View at Publisher · View at Google Scholar · View at MathSciNet
  24. S. Zhang, Q. A. Zong, D. Liu, and Q. Gao, “A generalized exp-function method for fractional Riccati differential equations,” Communications in Fractional Calculus, vol. 1, pp. 48–52, 2010.
  25. S. Zhang and H.-Q. Zhang, “Fractional sub-equation method and its applications to nonlinear fractional PDEs,” Physics Letters A, vol. 375, no. 7, pp. 1069–1073, 2011. View at Publisher · View at Google Scholar · View at MathSciNet
  26. M. L. Wang, “Solitary wave solutions for variant Boussinesq equations,” Physics Letters A, vol. 199, no. 3-4, pp. 169–172, 1995. View at Publisher · View at Google Scholar · View at MathSciNet
  27. G. Jumarie, “Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results,” Computers & Mathematics with Applications, vol. 51, no. 9-10, pp. 1367–1376, 2006. View at Publisher · View at Google Scholar · View at MathSciNet
  28. G. Jumarie, “Cauchy's integral formula via the modified Riemann-Liouville derivative for analytic functions of fractional order,” Applied Mathematics Letters, vol. 23, no. 12, pp. 1444–1450, 2010. View at Publisher · View at Google Scholar · View at MathSciNet
  29. S. Guo, L. Mei, Y. Li, and Y. Sun, “The improved fractional sub-equation method and its applications to the space-time fractional differential equations in fluid mechanics,” Physics Letters A, vol. 376, no. 4, pp. 407–411, 2012. View at Publisher · View at Google Scholar · View at MathSciNet
  30. S. M. Choo, S. K. Chung, and Y. J. Lee, “A conservative difference scheme for the viscous Cahn-Hilliard equation with a nonconstant gradient energy coefficient,” Applied Numerical Mathematics, vol. 51, no. 2-3, pp. 207–219, 2004. View at Publisher · View at Google Scholar · View at MathSciNet
  31. M. E. Gurtin, “Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance,” Physica D, vol. 92, no. 3-4, pp. 178–192, 1996. View at Publisher · View at Google Scholar · View at MathSciNet
  32. J. Kim, “A numerical method for the Cahn-Hilliard equation with a variable mobility,” Communications in Nonlinear Science and Numerical Simulation, vol. 12, no. 8, pp. 1560–1571, 2007. View at Publisher · View at Google Scholar · View at MathSciNet
  33. Sirendaoreji, “Auxiliary equation method and new solutions of Klein-Gordon equations,” Chaos, Solitons and Fractals, vol. 31, no. 4, pp. 943–950, 2007. View at Publisher · View at Google Scholar · View at MathSciNet
  34. K. M. Kolwankar and A. D. Gangal, “Local fractional Fokker-Planck equation,” Physical Review Letters, vol. 80, no. 2, pp. 214–217, 1998. View at Publisher · View at Google Scholar · View at MathSciNet
  35. Y. Zhou, M. Wang, and Y. Wang, “Periodic wave solutions to a coupled KdV equations with variable coefficients,” Physics Letters A, vol. 308, no. 1, pp. 31–36, 2003. View at Publisher · View at Google Scholar · View at MathSciNet