About this Journal Submit a Manuscript Table of Contents
Abstract and Applied Analysis
Volume 2013 (2013), Article ID 589386, 6 pages
http://dx.doi.org/10.1155/2013/589386
Research Article

An Enhanced Wu-Huberman Algorithm with Pole Point Selection Strategy

1School of Psychology, Liaoning Normal University, Dalian 116029, China
2School of Computer Science and Engineering, Aizu University, Aizuwakamatsu 965-8580, Japan

Received 26 February 2013; Accepted 23 April 2013

Academic Editor: Fuding Xie

Copyright © 2013 Yan Sun and Shuxue Ding. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. Wang and C. Zhang, “Label propagation through linear neighborhoods,” IEEE Transactions on Knowledge and Data Engineering, vol. 20, no. 1, pp. 55–67, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. Y. Sun, Y. Y. Tang, and L. Z. Yang, “An adaptive selection strategy and separation measure for improving the Wu-Huberman clustering,” ICIC Express Letters B, vol. 3, no. 6, pp. 1531–1536, 2012.
  3. L. K. Saul, K. Q. Weinberger, F. Sha, J. Ham, and D. D. Lee, Spectral Methods for Dimensionality Reduction, MIT Press, 2006.
  4. W. H. Cui, W. Wang, X. B. Liu, and J. S. Wang, “An improved clustering algorithm for product family design of paper currency sorter,” IICIC Express Letters B, vol. 3, no. 4, pp. 909–915, 2012.
  5. C. Cheng, D. Zhang, Z. Yu, and H. Li, “High speed data streams clustering algorithm based on improved SS tree,” ICIC Express Letters B, vol. 3, no. 1, pp. 207–212, 2012.
  6. F. Wang, C. Zhang, and T. Li, “Clustering with local and global regularization,” IEEE Transactions on Knowledge and Data Engineering, vol. 21, no. 12, pp. 1665–1678, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. X. Wang, X. Wang, and D. M. Wilkes, “A divide-and-conquer approach for minimum spanning tree-based clustering,” IEEE Transactions on Knowledge and Data Engineering, vol. 21, no. 7, pp. 945–958, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. D. X. Chang, X. D. Zhang, and C. W. Zheng, “A genetic algorithm with gene rearrangement for K-means clustering,” Pattern Recognition, vol. 42, no. 7, pp. 1210–1222, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. L. Jing, M. K. Ng, and J. Z. Huang, “An entropy weighting k-means algorithm for subspace clustering of high-dimensional sparse data,” IEEE Transactions on Knowledge and Data Engineering, vol. 19, no. 8, pp. 1026–1041, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. M. K. Ng, M. J. Li, J. Z. Huang, and Z. He, “On the impact of dissimilarity measure in κ-modes clustering algorithm,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 29, no. 3, pp. 503–507, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. M. H. Wang, Y. F. Tseng, H. C. Chen, and K. H. Chao, “A novel clustering algorithm based on the extension theory and genetic algorithm,” Expert Systems with Applications, vol. 36, no. 4, pp. 8269–8276, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. K. R. Žalik, “An efficient k′-means clustering algorithm,” Pattern Recognition Letters, vol. 29, no. 9, pp. 1385–1391, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Belkin, P. Niyogi, and V. Sindhwani, “Manifold regularization: a geometric framework for learning from labeled and unlabeled examples,” Journal of Machine Learning Research, vol. 7, no. 11, pp. 2399–2434, 2006. View at Zentralblatt MATH · View at MathSciNet
  14. C. H. Q. Ding, X. He, H. Zha, M. Gu, and H. D. Simon, “A min-max cult algorithm for graph partitioning and data clustering,” in Proceedings of the 1st IEEE International Conference on Data Mining (ICDM '01), pp. 107–114, San Jose, Calif, USA, December 2001. View at Scopus
  15. J. Shi and J. Malik, “Normalized cuts and image segmentation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22, no. 8, pp. 888–905, 2000. View at Publisher · View at Google Scholar · View at Scopus
  16. F. Wu and B. A. Huberman, “Finding communities in linear time: a physics approach,” European Physical Journal B, vol. 38, no. 2, pp. 331–338, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. S. E. Schaeffer, “Graph clustering,” Computer Science Review, vol. 1, no. 1, pp. 27–64, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D.-U. Hwang, “Complex networks: structure and dynamics,” Physics Reports, vol. 424, no. 4-5, pp. 175–308, 2006. View at Publisher · View at Google Scholar · View at MathSciNet
  19. O. Chapelle, V. Sindhwani, and S. Keerthi, “Branch and bound for semi-supervised support vector machines,” in Advances in Neural Information Processing Systems, B. Scholkopf, J. Platt, and T. Hoffman, Eds., vol. 19, MIT Press, Cambridge, Mass, USA, 2007.