About this Journal Submit a Manuscript Table of Contents
Abstract and Applied Analysis
Volume 2013 (2013), Article ID 608943, 8 pages
http://dx.doi.org/10.1155/2013/608943
Research Article

An Efficient Approach for Fractional Harry Dym Equation by Using Sumudu Transform

1Department of Mathematics, JaganNath Gupta Institute of Engineering and Technology, Jaipur, Rajasthan 302022, India
2Department of Mathematics, JaganNath University, Village-Rampura, Tehsil-Chaksu, Jaipur, Rajasthan 303901, India
3Department of Mathematics and Institute for Mathematical Research, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia

Received 13 March 2013; Accepted 22 April 2013

Academic Editor: Mustafa Bayram

Copyright © 2013 Devendra Kumar et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. O. Young, “Definition of physical consistent damping laws with fractional derivatives,” Zeitschrift für Angewandte Mathematik und Mechanik, vol. 75, pp. 623–635, 1995.
  2. R. Hilfer, Ed., Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000.
  3. I. Podlubny, Fractional Differential Equations, Academic Press, New York, NY, USA, 1999.
  4. F. Mainardi, Y. Luchko, and G. Pagnini, “The fundamental solution of the space-time fractional diffusion equation,” Fractional Calculus and Applied Analysis, vol. 4, pp. 153–192, 2001.
  5. L. Debnath, “Fractional integrals and fractional differential equations in fluid mechanics,” Fractional Calculus and Applied Analysis, vol. 6, pp. 119–155, 2003.
  6. M. Caputo, Elasticita e Dissipazione, Zani-Chelli, Bologna, Italy, 1969.
  7. K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York, NY, USA, 1993.
  8. K. B. Oldham and J. Spanier, The Fractional Calculus Theory and Applications of Differentiation and Integration to Arbitrary Order, Academic Press, New York, NY, USA, 1974.
  9. A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, The Netherlands, 2006.
  10. R. Mokhtari, “Exact solutions of the Harry-Dym equation,” Communications in Theoretical Physics, vol. 55, no. 2, pp. 204–208, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. M. D. Kruskal and J. Moser, Dynamical Systems, Theory and Applications, Lecturer Notes Physics, Springer, Berlin, Germany, 1975.
  12. G. L. Vasconcelos and L. P. Kadanoff, “Stationary solutions for the Saffman-Taylor problem with surface tension,” Physical Review A, vol. 44, no. 10, pp. 6490–6495, 1991. View at Publisher · View at Google Scholar · View at Scopus
  13. F. Gesztesy and K. Unterkofler, “Isospectral deformations for Strum-Liouville and Dirac-type operators and associated nonlinear evolution equations,” Reports on Mathematical Physics, vol. 31, no. 2, pp. 113–137, 1992. View at Scopus
  14. S. Kumar, M. P. Tripathi, and O. P. Singh, “A fractional model of Harry Dym equation and its approximate solution,” Ain Shams Engineering Journal, vol. 4, no. 1, pp. 111–115, 2013.
  15. J. H. He, “Homotopy perturbation technique,” Computer Methods in Applied Mechanics and Engineering, vol. 178, no. 3-4, pp. 257–262, 1999. View at Zentralblatt MATH · View at Scopus
  16. J. H. He, “Homotopy perturbation method: a new nonlinear analytical technique,” Applied Mathematics and Computation, vol. 135, no. 1, pp. 73–79, 2003. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  17. J. H. He, “Asymptotic methods for solitary solutions and compactions,” Abstract and Applied Analysis, vol. 2012, Article ID 916793, 130 pages, 2012. View at Publisher · View at Google Scholar
  18. D. D. Ganji, “The applications of He’s homotopy perturbation method to nonlinear equation arising in heat transfer,” Physics Letters A, vol. 335, pp. 337–341, 2006.
  19. D. D. Ganji and M. Rafei, “Solitary wave solutions for a generalized Hirota-Satsuma coupled KdV equation by homotopy perturbation method,” Physics Letters A, vol. 356, no. 2, pp. 131–137, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  20. A. Yildirim, “An algorithm for solving the fractional nonlinear Schrödinger equation by means of the homotopy perturbation method,” International Journal of Nonlinear Sciences and Numerical Simulation, vol. 10, no. 4, pp. 445–450, 2009. View at Scopus
  21. N. H. Sweilam and M. M. Khader, “Exact solutions of some coupled nonlinear partial differential equations using the homotopy perturbation method,” Computers and Mathematics with Applications, vol. 58, no. 11-12, pp. 2134–2141, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  22. M. M. Rashidi, D. D. Ganji, and S. Dinarvand, “Explicit analytical solutions of the generalized burger and burger-fisher equations by homotopy perturbation method,” Numerical Methods for Partial Differential Equations, vol. 25, no. 2, pp. 409–417, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Yildirim, “He's homotopy perturbation method for nonlinear differential-difference equations,” International Journal of Computer Mathematics, vol. 87, no. 5, pp. 992–996, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  24. H. Jafari, A. M. Wazwaz, and C. M. Khalique, “Homotopy perturbation and variational iteration methods for solving fuzzy differential equations,” Communications in Fractional Calculus, vol. 3, no. 1, pp. 38–48, 2012.
  25. A. Ghorbani and J. Saberi-Nadjafi, “He's homotopy perturbation method for calculating adomian polynomials,” International Journal of Nonlinear Sciences and Numerical Simulation, vol. 8, no. 2, pp. 229–232, 2007. View at Scopus
  26. A. Ghorbani, “Beyond Adomian polynomials: he polynomials,” Chaos, Solitons and Fractals, vol. 39, no. 3, pp. 1486–1492, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  27. S. A. Khuri, “A Laplace decomposition algorithm applied to a class of nonlinear differential equations,” Journal of Applied Mathematics, vol. 1, no. 4, pp. 141–155, 2001. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Khan and M. Hussain, “Application of Laplace decomposition method on semi-infinite domain,” Numerical Algorithms, vol. 56, no. 2, pp. 211–218, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Khan, M. A. Gondal, and S. Kumar, “A new analytical solution procedure for nonlinear integral equations,” Mathematical and Computer Modelling, vol. 55, pp. 1892–1897, 2012. View at Zentralblatt MATH
  30. M. A. Gondal and M. Khan, “Homotopy perturbation method for nonlinear exponential boundary layer equation using Laplace transformation, He's polynomials and pade technology,” International Journal of Nonlinear Sciences and Numerical Simulation, vol. 11, no. 12, pp. 1145–1153, 2010. View at Scopus
  31. J. Singh, D. Kumar, and Sushila, “Homotopy perturbation sumudu transform method for nonlinear equations,” Advances in Theoretical and Applied Mechanics, vol. 4, pp. 165–175, 2011. View at Zentralblatt MATH
  32. D. Kumar, J. Singh, and S. Rathore, “Sumudu decomposition method for nonlinear equations,” International Mathematical Forum, vol. 7, no. 11, pp. 515–521, 2012. View at Zentralblatt MATH
  33. G. K. Watugala, “Sumudu transform—a new integral transform to solve differential equations and control engineering problems,” Mathematical Engineering in Industry, vol. 6, no. 4, pp. 319–329, 1998. View at Scopus
  34. S. Weerakoon, “Applications of sumudu transform to partial differential equations,” International Journal of Mathematical Education in Science and Technology, vol. 25, no. 2, pp. 277–283, 1994.
  35. S. Weerakoon, “Complex inversion formula for sumudu transforms,” International Journal of Mathematical Education in Science and Technology, vol. 29, no. 4, pp. 618–621, 1998.
  36. M. A. Asiru, “Further properties of the sumudu transform and its applications,” International Journal of Mathematical Education in Science and Technology, vol. 33, no. 3, pp. 441–449, 2002. View at Zentralblatt MATH
  37. A. Kadem, “Solving the one-dimensional neutron transport equation using Chebyshev polynomials and the sumudu transform,” Analele Universitatii din Oradea, vol. 12, pp. 153–171, 2005. View at Zentralblatt MATH
  38. A. Kılıçman, H. Eltayeb, and K. A. M. Atan, “A note on the comparison between laplace and sumudu transforms,” Bulletin of the Iranian Mathematical Society, vol. 37, no. 1, pp. 131–141, 2011. View at Zentralblatt MATH · View at Scopus
  39. A. Kılıçman and H. E. Gadain, “On the applications of Laplace and Sumudu transforms,” Journal of the Franklin Institute, vol. 347, no. 5, pp. 848–862, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. H. Eltayeb, A. Kılıçman, and B. Fisher, “A new integral transform and associated distributions,” Integral Transforms and Special Functions, vol. 21, no. 5, pp. 367–379, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  41. A. Kılıçman and H. Eltayeb, “A note on integral transforms and partial differential equations,” Applied Mathematical Sciences, vol. 4, no. 1–4, pp. 109–118, 2010. View at Scopus
  42. A. Kılıçman, H. Eltayeb, and R. P. Agarwal, “On sumudu transform and system of differential equations,” Abstract and Applied Analysis, vol. 2010, Article ID 598702, 11 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. J. Zhang, “A sumudu based algorithm for solving differential equations,” Computer Science Journal of Moldova, vol. 15, pp. 303–313, 2007.
  44. V. B. L. Chaurasia and J. Singh, “Application of sumudu transform in schödinger equation occurring in quantum mechanics,” Applied Mathematical Sciences, vol. 4, no. 57–60, pp. 2843–2850, 2010. View at Scopus
  45. S. T. Mohyud-Din, M. A. Noor, and K. I. Noor, “Traveling wave solutions of seventh-order generalized KdV equations using he's polynomials,” International Journal of Nonlinear Sciences and Numerical Simulation, vol. 10, no. 2, pp. 227–233, 2009. View at Scopus
  46. K. Abbaoui and Y. Cherruault, “New ideas for proving convergence of decomposition methods,” Computers and Mathematics with Applications, vol. 29, no. 7, pp. 103–108, 1995. View at Scopus
  47. G. Adomian, Solving Frontier Problems of Physics: the Decomposition Method, Kluwer Academic Publishers, Boston, Mass, USA, 1994.
  48. Z. Odibat and S. Momani, “Numerical methods for nonlinear partial differential equations of fractional order,” Applied Mathematical Modelling, vol. 32, no. 1, pp. 28–39, 2008. View at Publisher · View at Google Scholar · View at Scopus