About this Journal Submit a Manuscript Table of Contents
Abstract and Applied Analysis
Volume 2013 (2013), Article ID 612576, 4 pages
http://dx.doi.org/10.1155/2013/612576
Research Article

A Fixed Point Approach to the Stability of an Integral Equation Related to the Wave Equation

Mathematics Section, College of Science and Technology, Hongik University, Sejong 339-701, Republic of Korea

Received 24 July 2013; Accepted 16 October 2013

Academic Editor: Hichem Ben-El-Mechaiekh

Copyright © 2013 Soon-Mo Jung. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. M. Ulam, A Collection of Mathematical Problems, Interscience Publishers, New York, NY, USA, 1960.
  2. D. H. Hyers, “On the stability of the linear functional equation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 27, no. 4, pp. 222–224, 1941. View at Publisher · View at Google Scholar
  3. T. M. Rassias, “On the stability of the linear mapping in Banach spaces,” Proceedings of the American Mathematical Society, vol. 72, pp. 297–300, 1978. View at Publisher · View at Google Scholar
  4. T. Aoki, “On the stability of the linear transformation in Banach spaces,” Journal of the Mathematical Society of Japan, vol. 2, no. 1-2, pp. 64–66, 1950. View at Publisher · View at Google Scholar
  5. L. Cădariu, “The generalized Hyers-Ulam stability for a class of the Volterra nonlinear integral equations,” Buletinul Stiintific al Universitatii “Politehnica” din Timisoara, vol. 56, no. 70, pp. 30–38, 2011.
  6. L. Cǎdariu, L. Gǎvruţa, and P. Gǎvruţa, “Weighted space method for the stability of some nonlinear equations,” Applicable Analysis and Discrete Mathematics, vol. 6, no. 1, pp. 126–139, 2012. View at Publisher · View at Google Scholar
  7. G. L. Forti, “Hyers-Ulam stability of functional equations in several variables,” Aequationes Mathematicae, vol. 50, no. 1-2, pp. 143–190, 1995. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  8. P. Găvrută, “A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings,” Journal of Mathematical Analysis and Applications, vol. 184, no. 3, pp. 431–436, 1994. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  9. D. H. Hyers, G. Isac, and M. Th. Rassias, Stability of Functional Equations of Several Variables, Birkhäuser, Basel, Switzerland, 1998.
  10. D. H. Hyers and T. M. Rassias, “Approximate homomorphisms,” Aequationes Mathematicae, vol. 44, no. 2-3, pp. 125–153, 1992. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  11. S.-M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis, vol. 48 of Springer Optimization and Its Applications, Springer, New York, NY, USA, 2011.
  12. T. M. Rassias, “On the stability of functional equations and a problem of Ulam,” Acta Applicandae Mathematicae, vol. 62, no. 1, pp. 23–130, 2000. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  13. L. Cădariu and V. Radu, “On the stability of the Cauchy functional equation: a fixed point approach,” Grazer Mathematische Berichte, vol. 346, pp. 43–52, 2004.
  14. M. Akkouchi, “Hyers-Ulam-Rassias stability of nonlinear Volterra integral equations via a fixed point approach,” Acta Universitatis Apulensis, vol. 26, pp. 257–266, 2011.
  15. L. Cădariu and V. Radu, “Fixed points and the stability of Jensen's functional equation,” Journal of Inequalities in Pure and Applied Mathematics, vol. 4, no. 1, Article ID 4, 2003.
  16. L. P. Castro and A. Ramos, “Hyers-Ulam-Rassias stability for a class of nonlinear Volterra integral equations,” Banach Journal of Mathematical Analysis, vol. 3, no. 1, pp. 36–43, 2009. View at Scopus
  17. K. Ciepliński, “Applications of fixed point theorems to the Hyers-Ulam stability of functional equations-a survey,” Annals of Functional Analysis, vol. 3, no. 1, pp. 151–164, 2012.
  18. S.-M. Jung, “A fixed point approach to the stability of isometries,” Journal of Mathematical Analysis and Applications, vol. 329, no. 2, pp. 879–890, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  19. V. Radu, “The fixed point alternative and the stability of functional equations,” Fixed Point Theory, vol. 4, no. 1, pp. 91–96, 2003.
  20. S.-M. Jung, “A fixed point approach to the stability of a volterra integral equation,” Fixed Point Theory and Applications, vol. 2007, Article ID 57064, 9 pages, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  21. B. Margolis and J. Diaz, “A fixed point theorem of the alternative for contractions on a generalized complete metric space,” Bulletin of the American Mathematical Society, vol. 74, pp. 305–309, 1968. View at Publisher · View at Google Scholar