About this Journal Submit a Manuscript Table of Contents
Abstract and Applied Analysis
Volume 2013 (2013), Article ID 652083, 9 pages
http://dx.doi.org/10.1155/2013/652083
Research Article

Model for the Assessment of Seawater Environmental Quality Based on Multiobjective Variable Fuzzy Set Theory

School of Hydraulic Engineering, Dalian University of Technology, Dalian 116024, China

Received 17 February 2013; Accepted 23 April 2013

Academic Editor: Yong Zhang

Copyright © 2013 Lina Ke and Huicheng Zhou. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. M. Chapman and F. Wang, “Assessing sediment contamination in estuaries,” Environmental Toxicology and Chemistry, vol. 20, no. 1, pp. 3–22, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. A. N. Papanicolaou, A. Bdour, N. Evangelopoulos, and N. Tallebeydokhti, “Watershed and instream impacts on the fish population in the South Fork of the Clearwater River, Idaho,” Journal of the American Water Resources Association, vol. 39, no. 1, pp. 191–203, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. N. Fierer, J. L. Morse, S. T. Berthrong, E. S. Bernhardt, and R. B. Jackson, “Environmental controls on the landscape-scale biogeography of stream bacterial communities,” Ecology, vol. 88, no. 9, pp. 2162–2173, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. K. O. Adebowale, F. O. Agunbiade, and B. I. Olu-Owolabi, “Fuzzy comprehensive assessment of metal contamination of water and sediments in Ondo Estuary, Nigeria,” Chemistry and Ecology, vol. 24, no. 4, pp. 269–283, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Wang, X. Lu, J. Tian, and M. Jiang, “Fuzzy synthetic evaluation of water quality of Naoli river using parameter correlation analysis,” Chinese Geographical Science, vol. 18, no. 4, pp. 361–368, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. X. L. Wang, T. Li, H. Yang, et al., “Fuzzy comprehensive-quantifying assessment in analysis of waterquality: a case study in Lake Honghu, China,” Environmental Engineering Science, vol. 26, no. 2, pp. 451–458, 2009. View at Publisher · View at Google Scholar
  7. L. Z. Xu, X. P. Ma, Z. Lin, et al., “Assessment method for water quality by multi-source information fusion based on BP neural networks and evidence theory,” Dynamics of Continuous Discrete and Impulsive Systems B, vol. 2, pp. 520–523, 2005.
  8. Z. H. Guo, J. Wu, H. Y. Lu, and J. Z. Wang, “A case study on a hybrid wind speed forecasting method using BP neural network,” Knowledge-Based Systems, vol. 24, no. 7, pp. 1048–1056, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. C. M. Mi, S. F. Liu, Y. Dang, et al., “Study on 2-tuple linguistic assessment method based on grey clustering,” Journal of Grey System, vol. 19, no. 3, pp. 257–268, 2007.
  10. J. Cao, H. Hu, S. Qian, and K. Xu, “Research on aggregative index number method in water quality assessment based on SVM,” in Proceedings of the 9th International Conference on Electronic Measurement and Instruments (ICEMI '09), pp. 4787–4791, August 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. L. Cea, M. Bermúdez, and J. Puertas, “Uncertainty and sensitivity analysis of a depth-averaged water quality model for evaluation of Escherichia coli concentration in shallow estuaries,” Environmental Modelling & Software, vol. 26, no. 12, pp. 1526–1539, 2011.
  12. M. T. Bhatti and M. Latif, “Assessment of water quality of a river using an indexing approach during the low-flow season,” Irrigation and Drainage, vol. 60, no. 1, pp. 103–114, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. N. B. Chang, H. W. Chen, and S. K. Ning, “Identification of river water quality using the fuzzy synthetic evaluation approach,” Journal of Environmental Management, vol. 63, no. 3, pp. 293–305, 2001. View at Publisher · View at Google Scholar · View at Scopus
  14. C. Ren, C. Li, K. Jia, S. Zhang, W. Li, and Y. Cao, “Water quality assessment for Ulansuhai Lake using fuzzy clustering and pattern recognition,” Chinese Journal of Oceanology and Limnology, vol. 26, no. 3, pp. 339–344, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. J. H. Kim, C. M. Choi, S. B. Kim, and S. K. Kwun, “Water quality monitoring and multivariate statistical analysis for rural streams in South Korea,” Paddy and Water Environment, vol. 7, no. 3, pp. 197–208, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. L. Liu, J. Zhou, X. An, Y. Zhang, and L. Yang, “Using fuzzy theory and information entropy for water quality assessment in Three Gorges region, China,” Expert Systems with Applications, vol. 37, no. 3, pp. 2517–2521, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. D. R. Pathak and A. Hiratsuka, “An integrated GIS based fuzzy pattern recognition model to compute groundwater vulnerability index for decision making,” Journal of Hydro-Environment Research, vol. 5, no. 1, pp. 63–77, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Y. Chen, M. Li, and S. Y. Wang, “Rationality analysis and application test of variable fuzzy clustering iterative model,” Journal of Dalian University of Technology, vol. 49, no. 6, pp. 932–936, 2009. View at Scopus
  19. S. Y. Chen and J. M. Hu, “Variable fuzzy assessment method and its application in assessing water resources carrying capacity,” Journal of Hydraulic Engineering, vol. 37, no. 3, pp. 264–277, 2006. View at Scopus
  20. S. Y. Chen, The System Fuzzy Decision Theory and Application, Dalian University of Technology Press, Liaoning China, 1994.
  21. R. R. Zhou, Research on Total Amount Control for Jiaozhou Bay Near Shore Area Pollution Based on ANN and Genetic Algorithms, Ocean University of China, QingDao, China, 2009.
  22. J. Jin, H. Huang, and Y. Wei, “Comprehensive evaluation model for water quality based on combined weights,” Journal of Hydroelectric Engineering, vol. 23, no. 3, pp. 13–19, 2004. View at Scopus
  23. L. Zheng, W. L. Cui, Y. Jia, et al., “Evaluation on seawater quality by fuzzy comprehensive evaluation method in Qingdao dumping area,” Marine Environmental Science, vol. 26, no. 1, p. 4, 2007 (Chinese).
  24. J. Yin, “On the management of marine dumping ground-taking the third category dredged material marine dumping ground outside the Jiaozhou bay, Qingdao as an example,” Coastal Engineering, vol. 20, no. 1, p. 4, 2001 (Chinese).
  25. X. G. Li, J. M. Song, N. Li, et al., “Source and biogeochemical characteristics of nitrogen and phosphorusin Jiaozhou Bay sediments,” Oceanologia et Limnologia Sinaca, vol. 36, no. 6, pp. 562–571, 2005 (Chinese).
  26. Y. Li, Z. M. Yu, X. H. Cao, et al., “Distribution and enrichment of heavy metals in surface sediments of Jiaozhou Bay,” Oceanologia et Limnologia Sinaca, 2005.
  27. L. Wan, N. Wang, Q. Li et al., “Distribution of dissolved metals in seawater of Jinzhou Bay, China,” Environmental Toxicology and Chemistry, vol. 27, no. 1, pp. 43–48, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. Z. G. Dong, A. G. Lou, and L. W. Cui, “Assessment of eutrophication of Jiaozhou Bay,” Marine Sciences, vol. 34, no. 12, pp. 36–39, 2010.
  29. L. Q. Ma, Y. Li, Y. J. Zhao, S. Peng, and Q. Zhou, “Temporal and spatial trends of total petroleum hydrocarbons in the seawater of Bohai Bay, China from 1996 to 2005,” Marine Pollution Bulletin, vol. 60, no. 2, pp. 238–243, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. D. Wang, V. P. Singh, and Y. Zhu, “Hybrid fuzzy and optimal modeling for water quality evaluation,” Water Resources Research, vol. 43, no. 5, Article ID W05415, 2007. View at Publisher · View at Google Scholar · View at Scopus