About this Journal Submit a Manuscript Table of Contents
Abstract and Applied Analysis
Volume 2013 (2013), Article ID 670878, 11 pages
http://dx.doi.org/10.1155/2013/670878
Research Article

Chaos Synchronization Based on Unknown Input Proportional Multiple-Integral Fuzzy Observer

1Laboratory of Modeling, Information & Systems (MIS), University of Picardie Jules Verne (UPJV), 33 rue Saint Leu, 80039 Amiens Cedex 1, France
2Laboratory of Automatic Applied (LAA), M’hamed Bougara University of Boumerdès (UMBB), 35000 Boumerdès, Algeria
3Department of Engineering, Faculty of Engineering and Science, University of Agder, 4898 Grimstad, Norway

Received 1 April 2013; Revised 17 June 2013; Accepted 18 June 2013

Academic Editor: Zidong Wang

Copyright © 2013 T. Youssef et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Jiang, G. Chen, and W. K. Tang, “Stabilizing unstable equilibria of chaotic systems from a state observer approach,” IEEE Transactions on Circuits and Systems II, vol. 51, no. 6, pp. 281–288, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. L. M. Pecora and T. L. Carroll, “Synchronization in chaotic systems,” Physical Review Letters, vol. 64, no. 8, pp. 821–824, 1990. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  3. T. L. Carroll and L. M. Pecora, “Synchronizing chaotic circuits,” IEEE Transactions on Circuits and Systems, vol. 38, no. 4, pp. 453–456, 1991. View at Publisher · View at Google Scholar · View at Scopus
  4. E. N. Lorenz, “Deterministic nonperiodic flow,” Journal of the Atmospheric Sciences, vol. 20, no. 2, pp. 130–141, 1963.
  5. J. Yang, G. Hu, and J. Xiao, “Chaos synchronization in coupled chaotic oscillators with multiple positive lyapunov exponents,” Physical Review Letters, vol. 80, no. 3, pp. 496–499, 1998. View at Scopus
  6. S. Boccaletti, C. Grebogi, Y.-C. Lai, H. Mancini, and D. Maza, “The control of chaos: theory and applications,” Physics Reports, vol. 329, no. 3, pp. 103–197, 2000. View at Publisher · View at Google Scholar · View at MathSciNet
  7. S. Boccaletti, J. Kurths, G. Osipov, D. L. Valladares, and C. S. Zhou, “The synchronization of chaotic systems,” Physics Reports, vol. 366, no. 1-2, pp. 1–101, 2002. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  8. E. M. Shahverdiev, “Synchronization in systems with multiple time delays,” Physical Review E, vol. 70, no. 6, Article ID 067202, 4 pages, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Xu, L. Min, and G. Chen, “A chaotic communication scheme based on generalized synchronization and hash functions,” Chinese Physics Letters, vol. 21, no. 8, pp. 1445–1448, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. J. W. Haefner, Modeling Biological Systems: Principles and Applications, Springer, New York, NY, USA, 2005. View at MathSciNet
  11. B. Shen, Z. Wang, and X. Liu, “Bounded H synchronization and state estimation for discrete time-varying stochastic complex networks over a finite horizon,” IEEE Transactions on Neural Networks, vol. 22, no. 1, pp. 145–157, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. Liu, Z. Wang, J. Liang, and X. Liu, “Synchronization of coupled neutral-type neural networks with jumping-mode-dependent discrete and unbounded distributed delays,” IEEE Transactions on Cybernetics, vol. 43, no. 1, pp. 102–114, 2013.
  13. B. Shen, Z. Wang, and X. Liu, “Sampled-data synchronization control of dynamical networks with stochastic sampling,” IEEE Transactions on Automatic Control, vol. 57, no. 10, pp. 2644–2650, 2012. View at Publisher · View at Google Scholar · View at MathSciNet
  14. D. Ding, Z. Wang, H. Dong, and H. Shu, “Distributed H state estimation with stochastic parameters and nonlinearities through sensor networks: the finite-horizon case,” Automatica, vol. 48, no. 8, pp. 1575–1585, 2012. View at Publisher · View at Google Scholar · View at MathSciNet
  15. B. Shen, Z. Wang, Y. S. Hung, and G. Chesi, “Distributed H filtering for polynomial nonlinear stochastic systems in sensor networks,” IEEE Transactions on Industrial Electronics, vol. 58, no. 5, pp. 1971–1979, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. H. Dong, Z. Wang, and H. Gao, “Distributed filtering for a class of time-varying systems over sensor networks with quantization errors and successive packet dropouts,” IEEE Transactions on Signal Processing, vol. 60, no. 6, pp. 3164–3173, 2012. View at Publisher · View at Google Scholar · View at MathSciNet
  17. H. Dong, Z. Wang, J. Lam, and H. Gao, “Fuzzy-model-based robust fault detection with stochastic mixed time delays and successive packet dropouts,” IEEE Transactions on Systems, Man, and Cybernetics B, vol. 42, no. 2, pp. 365–376, 2012. View at Publisher · View at Google Scholar · View at Scopus
  18. B. Wanga, J. Wang, and S. M. Zhong, “Impulsive synchronization control for chaotic systems,” Procedia Engineering, vol. 15, pp. 2721–2726, 2011.
  19. C. Tao, C. Yang, Y. Luo, H. Xiong, and F. Hu, “Speed feedback control of chaotic system,” Chaos, Solitons and Fractals, vol. 23, no. 1, pp. 259–263, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. Y. Yu, “Adaptive synchronization of a unified chaotic system,” Chaos, Solitons and Fractals, vol. 36, no. 2, pp. 329–333, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. C. Li, X. Liao, and K.-W. Wong, “Lag synchronization of hyperchaos with application to secure communications,” Chaos, Solitons and Fractals, vol. 23, no. 1, pp. 183–193, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  22. M. S. Tavazoei and M. Haeri, “Determination of active sliding mode controller parameters in synchronizing different chaotic systems,” Chaos, Solitons and Fractals, vol. 32, no. 2, pp. 583–591, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. J. G. Barajas-Ramírez, G. Chen, and L. S. Shieh, “Fuzzy chaos synchronization via sampled driving signals,” International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, vol. 14, no. 8, pp. 2721–2733, 2004. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  24. T. Liao and S. Tsai, “Adaptive synchronization of chaotic systems and its application to secure communications,” Chaos, solitons and fractals, vol. 11, no. 9, pp. 1387–1396, 2000. View at Publisher · View at Google Scholar · View at Scopus
  25. C.-J. Cheng, “Robust synchronization of uncertain unified chaotic systems subject to noise and its application to secure communication,” Applied Mathematics and Computation, vol. 219, no. 5, pp. 2698–2712, 2012. View at Publisher · View at Google Scholar · View at MathSciNet
  26. T. Yang, “Secure communication via chaotic parameter modulation,” IEEE Transactions on Circuits and Systems I, vol. 43, no. 9, pp. 817–819, 1996. View at Publisher · View at Google Scholar · View at Scopus
  27. H. Dedieu, M. P. Kennedy, and M. Hasler, “Chaos shift keying: modulation and demodulation of a chaotic carrier using self-synchronizing Chua's circuits,” IEEE Transactions on Circuits and Systems II, vol. 40, no. 10, pp. 634–642, 1993. View at Publisher · View at Google Scholar · View at Scopus
  28. K. M. Cuomo, A. V. Oppenheim, and S. H. Strogatz, “Synchronization of Lorenz-based chaotic circuits with applications to communications,” IEEE Transactions on Circuits and Systems II, vol. 40, no. 10, pp. 626–633, 1993. View at Publisher · View at Google Scholar · View at Scopus
  29. T. Takagi and M. Sugeno, “Fuzzy identification of systems and its applications to modeling and control,” IEEE Transactions on Systems, Man and Cybernetics, vol. 15, no. 1, pp. 116–132, 1985. View at Scopus
  30. K. Lian, T. Chiang, C. Chiu, and P. Liu, “Synthesis of fuzzy model-based designs to synchronization and secure communications for chaotic systems,” IEEE Transactions on Systems, Man, and Cybernetics B, vol. 31, no. 1, pp. 66–83, 2001. View at Publisher · View at Google Scholar · View at Scopus
  31. J.-H. Kim, C.-W. Park, E. Kim, and M. Park, “Adaptive synchronization of T-S fuzzy chaotic systems with unknown parameters,” Chaos, Solitons and Fractals, vol. 24, no. 5, pp. 1353–1361, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  32. C.-H. Hyun, C.-W. Park, J.-H. Kim, and M. Park, “Synchronization and secure communication of chaotic systems via robust adaptive high-gain fuzzy observer,” Chaos, Solitons and Fractals, vol. 40, no. 5, pp. 2200–2209, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  33. S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory, SIAM Studies in Applied Mathematics, Society for Industrial and Applied Mathematics, Philadelphia, Pa, USA, 1994. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  34. K. Tanaka and H. O. Wang, Fuzzy Control System Design and Analysis. A Linear Matrix Inequality Approach, John Wiley & Sons, New York, NY, USA, 2001.
  35. M. Chadli and H. R. Karimi, “Robust observer design for unknown inputs Takagi-Sugeno models,” IEEE Transactions on Fuzzy Systems, vol. 21, no. 1, pp. 158–164, 2013.
  36. H. Dimassi, A. Loria, and S. Belghith, “A new secured transmission scheme based on chaotic synchronization via smooth adaptive unknown-input observers,” Communications in Nonlinear Science and Numerical Simulation, vol. 17, no. 9, pp. 3727–3739, 2012. View at Publisher · View at Google Scholar · View at Scopus
  37. M. Chen and W. Min, “Unknown input observer based chaotic secure communication,” Physics Letters A, vol. 372, no. 10, pp. 1595–1600, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  38. M. Chadli and I. Zlinka, “Unknown input observer design for fuzzy systems with application to chaotic system reconstruction,” Computers and Mathematics with Applications, vol. 66, no. 2, pp. 147–154, 2013.
  39. M. Chadli, A. Akhenak, J. Ragot, and D. Maquin, “State and unknown input estimation for discrete time multiple model,” Journal of the Franklin Institute, vol. 346, no. 6, pp. 593–610, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  40. T. Youssef, M. Chadli, H. R. Karimi, and M. Zelmat, “Design of unknown inputs proportional integral observers for TS fuzzy models,” Neurocomputing Journal, vol. 210, no. 163, p. 174, 2013.
  41. X. Meng, Y. Yu, G. Wen, and R. Chen, “Chaos synchronization of unified chaotic system using fuzzy logic controller,” in Proceedings of the IEEE International Conference on Fuzzy Systems (FUZZ '08), pp. 544–547, June 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. K. Tanaka, T. Ikeda, and H. O. Wang, “A unified approach to controlling chaos via an LMI-based fuzzy control system design,” IEEE Transactions on Circuits and Systems I, vol. 45, no. 10, pp. 1021–1040, 1998. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet