About this Journal Submit a Manuscript Table of Contents
Abstract and Applied Analysis
Volume 2013 (2013), Article ID 672058, 5 pages
http://dx.doi.org/10.1155/2013/672058
Research Article

Bezier Curves Method for Fourth-Order Integrodifferential Equations

1Department of Applied Mathematics, Faculty of Mathematical Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
2Department of Mathematics, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia

Received 3 September 2013; Accepted 22 September 2013

Academic Editor: Abdon Atangana

Copyright © 2013 F. Ghomanjani et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Atangana and D. Baleanu, “Nonlinear fractional Jaulent-Miodek and Whitham-Broer-Kaup equations within Sumudu transform,” Abstract and Applied Analysis, vol. 2013, Article ID 160681, 8 pages, 2013. View at Zentralblatt MATH · View at MathSciNet
  2. A. Atangana and A. Secer, “The time-fractional coupled-Korteweg-de-Vries equations,” Abstract and Applied Analysis, vol. 2013, Article ID 947986, 8 pages, 2013. View at Zentralblatt MATH · View at MathSciNet
  3. G. Adomian, Solving Frontier Problems of Physics: The Decomposition Method, vol. 60 of Fundamental Theories of Physics, Kluwer Academic Publishers Group, Dordrecht, The Netherlands, 1994, With a preface by Yves Cherruault. View at MathSciNet
  4. I. Hashim, “Adomian decomposition method for solving BVPs for fourth-order integro-differential equations,” Journal of Computational and Applied Mathematics, vol. 193, no. 2, pp. 658–664, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  5. A.-M. Wazwaz, “A reliable algorithm for solving boundary value problems for higher-order integro-differentiable equations,” Applied Mathematics and Computation, vol. 118, no. 2-3, pp. 327–342, 2001. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  6. F. Ghomanjani and M. H. Farahi, “The Bezier control points method for solving delay differential equation,” Intelligent Control and Automation, vol. 3, no. 2, pp. 188–196, 2012.
  7. F. Ghomanjani, M. H. Farahi, and M. Gachpazan, “Bézier control points method to solve constrained quadratic optimal control of time varying linear systems,” Computational & Applied Mathematics, vol. 31, no. 3, pp. 433–456, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  8. F. Ghomanjani, A. Kılıçman, and S. Effati, “Numerical solution for IVP in Volterra type linear integro-differential equations system,” Abstract and Applied Analysis, vol. 2013, Article ID 490689, 4 pages, 2013. View at Publisher · View at Google Scholar
  9. R. P. Agarwal, Boundary Value Problems for Higher Order Differential Equations, World Scientific, Singapore, 1986. View at MathSciNet
  10. E. Tohidi and A. Kılıçman, “Collocation method based on the bernoulli operational matrix for solving nonlinear BVPs which arise from the problems in calculus of variation,” Mathematical Problems in Engineering, vol. 2013, Article ID 757206, 9 pages, 2013. View at Publisher · View at Google Scholar
  11. R. Y. Chang and M. L. Wang, “Shifted Legendre direct method for variational problems,” Journal of Optimization Theory and Applications, vol. 39, no. 2, pp. 299–307, 1983. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet