About this Journal Submit a Manuscript Table of Contents
Abstract and Applied Analysis
Volume 2013 (2013), Article ID 681319, 10 pages
http://dx.doi.org/10.1155/2013/681319
Research Article

Robust Coordinated Formation for Multiple Surface Vessels Based on Backstepping Sliding Mode Control

1College of Automation, Harbin Engineering University, Harbin, Heilongjiang 150001, China
2University of Duisburg-Essen, 47057 Duisburg, Germany

Received 13 June 2013; Accepted 25 July 2013

Academic Editor: Lixian Zhang

Copyright © 2013 Mingyu Fu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. Zhang, H. Gao, and O. Kaynak, “Network-induced constraints in networked control system-a survey,” IEEE Transactions on Industrial Informatics, vol. 9, no. 1, pp. 403–416, 2013.
  2. W. Ren, R. W. Beard, and E. M. Atkins, “A survey of consensus problems in multi-agent coordination,” in Proceedings of the American Control Conference (ACC '05), pp. 1859–1864, June 2005. View at Scopus
  3. A. Aguiar, J. Almeida, and M. Bayat, “Cooperative autonomous marine vehicle motion control in the scope of the eugrex project: theory and practice,” in Proceedings of the IEEE/MTS Conference on Oceans, pp. 1–10, 2009.
  4. I.-A. F. Ihle, J. Jouffroy, and T. I. Fossen, “Formation control of marine surface craft: a lagrangian approach,” IEEE Journal of Oceanic Engineering, vol. 31, no. 4, pp. 922–934, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. F. Arrichiello, S. Chiaverini, and T. I. Fossen, “Formation control of underactuated surface vessels using the null-spaee-based behavioral control,” in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '06), pp. 5942–5947, October 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. F. Fahimi, “Non-linear model predictive formation control for groups of autonomous surface vessels,” International Journal of Control, vol. 80, no. 8, pp. 1248–1259, 2007. View at Publisher · View at Google Scholar · View at MathSciNet
  7. J. Almeida, C. Silvestre, and A. M. Pascoal, “Cooperative control of multiple surface vessels with discrete-time periodic communications,” International Journal of Robust and Nonlinear Control, vol. 22, no. 4, pp. 398–419, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  8. I.-A. F. Ihle, M. Arcak, and T. I. Fossen, “Passivity-based designs for synchronized path-following,” Automatica, vol. 43, no. 9, pp. 1508–1518, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  9. E. Børhaug, A. Pavlov, E. Panteley, and K. Y. Pettersen, “Straight line path following for formations of underactuated marine surface vessels,” IEEE Transactions on Control Systems Technology, vol. 19, no. 3, pp. 493–506, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Ghommam and F. Mnif, “Coordinated path-following control for a group of underactuated surface vessels,” IEEE Transactions on Industrial Electronics, vol. 56, no. 10, pp. 3951–3963, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. Wang, W. Yan, and J. Li, “Passivity-based formation control of autonomous underwater vehicles,” IET Control Theory & Applications, vol. 6, no. 4, pp. 518–525, 2012. View at Publisher · View at Google Scholar · View at MathSciNet
  12. C. Thorvaldsen and R. Skjetne, “Formation control of fully-actuated marine vessels using group agreement protocols,” in Proceedings of the 50th IEEE Conference on Decision and Control and European Control Conference, pp. 4132–4139, 2011.
  13. M. Fu and J. Jiao, “A hybrid approach for coordinated formation control of multiple surface vessels,” Mathematical Problems in Engineering, vol. 2013, Article ID 794284, 8 pages, 2013. View at Publisher · View at Google Scholar
  14. I. A. Gravagne, J. M. Davis, and J. J. DaCunha, “A unified approach to high-gain adaptive controllers,” Abstract and Applied Analysis, vol. 2009, Article ID 198353, 13 pages, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  15. S. Yin, S. Ding, and H. Luo, “Real-time implementtion of fault tolerant control system with performance optimization,” IEEE Transactions on Industrial Electronics, 2013. View at Publisher · View at Google Scholar
  16. J. Huang, H. Li, Y. Chen, and Q. Xu, “Robust position control of PMSM using fractional-order sliding mode controller,” Abstract and Applied Analysis, vol. 2012, Article ID 512703, 33 pages, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  17. L. Zhang and E.-K. Boukas, “Stability and stabilization of Markovian jump linear systems with partly unknown transition probabilities,” Automatica, vol. 45, no. 2, pp. 463–468, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  18. L. Zhang, P. Shi, E.-K. Boukas, and C. Wang, “H model reduction for uncertain switched linear discrete-time systems,” Automatica, vol. 44, no. 11, pp. 2944–2949, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  19. E. A. Tannuri, A. C. Agostinho, H. M. Morishita, and L. Moratelli, “Dynamic positioning systems: an experimental analysis of sliding mode control,” Control Engineering Practice, vol. 18, no. 10, pp. 1121–1132, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. H. Ashrafiuon, K. R. Muske, L. C. McNinch, and R. A. Soltan, “Sliding-mode tracking control of surface vessels,” IEEE Transactions on Industrial Electronics, vol. 55, no. 11, pp. 4004–4012, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. F. Fahimi, “Sliding-mode formation control for underactuated surface vessels,” IEEE Transactions on Robotics, vol. 23, no. 3, pp. 617–622, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Defoort, T. Floquet, A. Kökösy, and W. Perruquetti, “Sliding-mode formation control for cooperative autonomous mobile robots,” IEEE Transactions on Industrial Electronics, vol. 55, no. 11, pp. 3944–3953, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. Y. Xia, Z. Zhu, and M. Fu, “Back-stepping sliding mode control for missile systems based on an extended state observer,” IET Control Theory & Applications, vol. 5, no. 1, pp. 93–102, 2011. View at Publisher · View at Google Scholar · View at MathSciNet
  24. D. Zhao and T. Zou, “A finite-time approach to formation control of multiple mobile robots with terminal sliding mode,” International Journal of Systems Science, vol. 43, no. 11, pp. 1998–2014, 2012. View at Publisher · View at Google Scholar · View at MathSciNet
  25. D. Zhao, T. Zou, S. Li, and Q. Zhu, “Adaptive backstepping sliding mode control for leader-follower multi-agent systems,” IET Control Theory & Applications, vol. 6, no. 8, pp. 1109–1117, 2012. View at Publisher · View at Google Scholar · View at MathSciNet
  26. W. Ren, “Distributed leaderless consensus algorithms for networked Euler-Lagrange systems,” International Journal of Control, vol. 82, no. 11, pp. 2137–2149, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  27. D. Sun, C. Wang, W. Shang, and G. Feng, “A synchronization approach to trajectory tracking of multiple mobile robots while maintaining time-varying formations,” IEEE Transactions on Robotics, vol. 25, no. 5, pp. 1074–1086, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. H. Khalil, Nonlinear Systems, Prentice Hall, Upper Saddle River, NJ, USA, 3rd edition, 2002.
  29. T. Fossen, Marine Control Systems: Guidance, Navigation and Control of Ships, Rigs and Underwater Vehicles, Marine Cybernetics, Trondheim, Norway, 2002.