About this Journal Submit a Manuscript Table of Contents
Abstract and Applied Analysis
Volume 2013 (2013), Article ID 682061, 8 pages
http://dx.doi.org/10.1155/2013/682061
Research Article

General Decay for the Degenerate Equation with a Memory Condition at the Boundary

Department of Mathematics, Dong-A University, Saha-Ku, Busan 604-714, Republic of Korea

Received 21 December 2012; Accepted 5 March 2013

Academic Editor: Abdelaziz Rhandi

Copyright © 2013 Su-Young Shin and Jum-Ran Kang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. M. Cavalcanti, V. N. Domingos Cavalcanti, J. S. Prates Filho, and J. A. Soriano, “Existence and uniform decay of solutions of a degenerate equation with nonlinear boundary damping and boundary memory source term,” Nonlinear Analysis: Theory, Methods & Applications, vol. 38, no. 3, pp. 281–294, 1999. View at Publisher · View at Google Scholar · View at MathSciNet
  2. S. D. B. Menezes, E. A. de Oliveira, D. C. Pereira, and J. Ferreira, “Existence, uniqueness and uniform decay for the nonlinear beam degenerate equation with weak damping,” Applied Mathematics and Computation, vol. 154, no. 2, pp. 555–565, 2004. View at Publisher · View at Google Scholar · View at MathSciNet
  3. M. Aassila, M. M. Cavalcanti, and V. N. Domingos Cavalcanti, “Existence and uniform decay of the wave equation with nonlinear boundary damping and boundary memory source term,” Calculus of Variations and Partial Differential Equations, vol. 15, no. 2, pp. 155–180, 2002. View at Publisher · View at Google Scholar · View at MathSciNet
  4. M. Aassila, M. M. Cavalcanti, and J. A. Soriano, “Asymptotic stability and energy decay rates for solutions of the wave equation with memory in a star-shaped domain,” SIAM Journal on Control and Optimization, vol. 38, no. 5, pp. 1581–1602, 2000. View at Publisher · View at Google Scholar · View at MathSciNet
  5. F. Alabau-Boussouira, P. Cannarsa, and D. Sforza, “Decay estimates for second order evolution equations with memory,” Journal of Functional Analysis, vol. 254, no. 5, pp. 1342–1372, 2008. View at Publisher · View at Google Scholar · View at MathSciNet
  6. F. Alabau-Boussouira, J. Prüss, and R. Zacher, “Exponential and polynomial stability of a wave equation for boundary memory damping with singular kernels,” Comptes Rendus Mathematique, vol. 347, no. 5-6, pp. 277–282, 2009. View at Publisher · View at Google Scholar · View at MathSciNet
  7. M. M. Cavalcanti, V. N. Domingos Cavalcanti, and J. Ferreira, “Existence and uniform decay for a non-linear viscoelastic equation with strong damping,” Mathematical Methods in the Applied Sciences, vol. 24, no. 14, pp. 1043–1053, 2001. View at Publisher · View at Google Scholar · View at MathSciNet
  8. M. M. Cavalcanti, V. N. Domingos Cavalcanti, and P. Martinez, “General decay rate estimates for viscoelastic dissipative systems,” Nonlinear Analysis: Theory, Methods & Applications, vol. 68, no. 1, pp. 177–193, 2008. View at Publisher · View at Google Scholar · View at MathSciNet
  9. M. M. Cavalcanti, V. N. Domingos Cavalcanti, J. S. Prates, and J. A. Soriano, “Existence and uniform decay rates for viscoelastic problems with nonlinear boundary damping,” Differential and Integral Equations, vol. 14, no. 1, pp. 85–116, 2001. View at MathSciNet
  10. M. M. Cavalcanti and H. P. Oquendo, “Frictional versus viscoelastic damping in a semilinear wave equation,” SIAM Journal on Control and Optimization, vol. 42, no. 4, pp. 1310–1324, 2003. View at Publisher · View at Google Scholar · View at MathSciNet
  11. A. Guesmia and S. A. Messaoudi, “General energy decay estimates of Timoshenko systems with frictional versus viscoelastic damping,” Mathematical Methods in the Applied Sciences, vol. 32, no. 16, pp. 2102–2122, 2009. View at Publisher · View at Google Scholar · View at MathSciNet
  12. X. S. Han and M. X. Wang, “Global existence and uniform decay for a nonlinear viscoelastic equation with damping,” Nonlinear Analysis: Theory, Methods & Applications, vol. 70, no. 9, pp. 3090–3098, 2009. View at Publisher · View at Google Scholar · View at MathSciNet
  13. J. R. Kang, “Energy decay rates for von Kármán system with memory and boundary feedback,” Applied Mathematics and Computation, vol. 218, no. 18, pp. 9085–9094, 2012. View at Publisher · View at Google Scholar · View at MathSciNet
  14. S. A. Messaoudi, “General decay of solutions of a viscoelastic equation,” Journal of Mathematical Analysis and Applications, vol. 341, no. 2, pp. 1457–1467, 2008. View at Publisher · View at Google Scholar · View at MathSciNet
  15. S. A. Messaoudi, “General decay of the solution energy in a viscoelastic equation with a nonlinear source,” Nonlinear Analysis: Theory, Methods & Applications, vol. 69, no. 8, pp. 2589–2598, 2008. View at Publisher · View at Google Scholar · View at MathSciNet
  16. S. A. Messaoudi and M. I. Mustafa, “On convexity for energy decay rates of a viscoelastic equation with boundary feedback,” Nonlinear Analysis: Theory, Methods & Applications, vol. 72, no. 9-10, pp. 3602–3611, 2010. View at Publisher · View at Google Scholar · View at MathSciNet
  17. J. Prüss, “Decay properties for the solutions of a partial differential equation with memory,” Archiv der Mathematik, vol. 92, no. 2, pp. 158–173, 2009. View at Publisher · View at Google Scholar · View at MathSciNet
  18. M. L. Santos, J. Ferreira, D. C. Pereira, and C. A. Raposo, “Global existence and stability for wave equation of Kirchhoff type with memory condition at the boundary,” Nonlinear Analysis: Theory, Methods & Applications, vol. 54, no. 5, pp. 959–976, 2003. View at Publisher · View at Google Scholar · View at MathSciNet
  19. M. M. Cavalcanti, V. N. Domingos Cavalcanti, and M. L. Santos, “Existence and uniform decay rates of solutions to a degenerate system with memory conditions at the boundary,” Applied Mathematics and Computation, vol. 150, no. 2, pp. 439–465, 2004. View at Publisher · View at Google Scholar · View at MathSciNet
  20. M. L. Santos and F. Junior, “A boundary condition with memory for Kirchhoff plates equations,” Applied Mathematics and Computation, vol. 148, no. 2, pp. 475–496, 2004. View at Publisher · View at Google Scholar · View at MathSciNet
  21. J. E. M. Rivera, H. P. Oquendo, and M. L. Santos, “Asymptotic behavior to a von Kármán plate with boundary memory conditions,” Nonlinear Analysis: Theory, Methods & Applications, vol. 62, no. 7, pp. 1183–1205, 2005. View at Publisher · View at Google Scholar · View at MathSciNet
  22. J. Y. Park and J. R. Kang, “Uniform decay for hyperbolic differential inclusion with memory condition at the boundary,” Numerical Functional Analysis and Optimization, vol. 27, no. 7-8, pp. 875–888, 2006. View at Publisher · View at Google Scholar · View at MathSciNet
  23. S. A. Messaoudi and A. Soufyane, “General decay of solutions of a wave equation with a boundary control of memory type,” Nonlinear Analysis: Real World Applications, vol. 11, no. 4, pp. 2896–2904, 2010. View at Publisher · View at Google Scholar · View at MathSciNet
  24. M. I. Mustafa and S. A. Messaoudi, “Energy decay rates for a Timoshenko system with viscoelastic boundary conditions,” Applied Mathematics and Computation, vol. 218, no. 18, pp. 9125–9131, 2012. View at Publisher · View at Google Scholar · View at MathSciNet
  25. M. L. Santos and A. Soufyane, “General decay to a von Kármán plate system with memory boundary conditions,” Differential and Integral Equations, vol. 24, no. 1-2, pp. 69–81, 2011. View at MathSciNet
  26. J. E. Lagnese, Boundary Stabilization of Thin Plates, SIAM. Society for Industrial and Applied Mathematics, Philadelphia, Pa, USA, 1989. View at Publisher · View at Google Scholar · View at MathSciNet
  27. J. Y. Park and J. R. Kang, “Existence, uniqueness and uniform decay for the non-linear degenerate equation with memory condition at the boundary,” Applied Mathematics and Computation, vol. 202, no. 2, pp. 481–488, 2008. View at Publisher · View at Google Scholar · View at MathSciNet