About this Journal Submit a Manuscript Table of Contents
Abstract and Applied Analysis
Volume 2013 (2013), Article ID 723453, 8 pages
http://dx.doi.org/10.1155/2013/723453
Research Article

Existence for Nonautonomous Fractional Integrodifferential Equations with Nonlocal Conditions

School of Mathematics, Yunnan Normal University, Kunming 650092, China

Received 10 July 2013; Revised 16 September 2013; Accepted 12 October 2013

Academic Editor: Dumitru Baleanu

Copyright © 2013 Fang Li. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. Hille and R. S. Phillips, Functional Analysis and Semi-Groups, vol. 31 of American Mathematical Society, American Mathematical Society, Providence, RI, USA, 1957. View at MathSciNet
  2. A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science, Amsterdam, The Netherlands, 2006. View at Publisher · View at Google Scholar · View at MathSciNet
  3. V. Kiryakova, Generalized Fractional Calculus and Applications, Longman Scientific & Technical, Harlow, UK, 1994, copublished in the United States with John Wiley & Sons, New York, NY, USA. View at MathSciNet
  4. V. Lakshmikantham and A. S. Vatsala, “Basic theory of fractional differential equations,” Nonlinear Analysis: Theory, Methods & Applications, vol. 69, no. 8, pp. 2677–2682, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  5. K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley & Sons, New York, NY, USA, 1993. View at MathSciNet
  6. S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives, Gordon and Breach Science, New York, NY, USA, 1993. View at MathSciNet
  7. I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, Calif, USA, 1999. View at MathSciNet
  8. R. P. Agarwal, V. Lakshmikantham, and J. J. Nieto, “On the concept of solution for fractional differential equations with uncertainty,” Nonlinear Analysis: Theory, Methods & Applications, vol. 72, no. 6, pp. 2859–2862, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  9. B. Ahmad, J. J. Nieto, A. Alsaedi, and M. El-Shahed, “A study of nonlinear Langevin equation involving two fractional orders in different intervals,” Nonlinear Analysis: Real World Applications, vol. 13, no. 2, pp. 599–606, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  10. K. Balachandran and S. Kiruthika, “Existence of solutions of abstract fractional integrodifferential equations of Sobolev type,” Computers & Mathematics with Applications, vol. 64, no. 10, pp. 3406–3413, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  11. A. Debbouche, D. Baleanu, and R. P. Agarwal, “Nonlocal nonlinear integrodifferential equations of fractional orders,” Boundary Value Problems, vol. 2010, article 78, 2012. View at Publisher · View at Google Scholar · View at MathSciNet
  12. M. M. El-Borai, “The fundamental solutions for fractional evolution equations of parabolic type,” Journal of Applied Mathematics and Stochastic Analysis, vol. 2004, no. 3, pp. 197–211, 2004. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  13. G. M. N'Guérékata, “A Cauchy problem for some fractional abstract differential equation with non local conditions,” Nonlinear Analysis: Theory, Methods & Applications, vol. 70, no. 5, pp. 1873–1876, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  14. L. Hu, Y. Ren, and R. Sakthivel, “Existence and uniqueness of mild solutions for semilinear integro-differential equations of fractional order with nonlocal initial conditions and delays,” Semigroup Forum, vol. 79, no. 3, pp. 507–514, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  15. F. Li, “Existence and uniqueness of mild solution for fractional integrodifferential equations of neutral type with nonlocal conditions,” Mathematica Slovaca, vol. 62, no. 5, pp. 921–936, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  16. E. Hernández, D. O'Regan, and K. Balachandran, “On recent developments in the theory of abstract differential equations with fractional derivatives,” Nonlinear Analysis: Theory, Methods & Applications, vol. 73, no. 10, pp. 3462–3471, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  17. G. M. Mophou and G. M. N'Guérékata, “Existence of the mild solution for some fractional differential equations with nonlocal conditions,” Semigroup Forum, vol. 79, no. 2, pp. 315–322, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  18. V. E. Tarasov and J. J. Trujillo, “Fractional power-law spatial dispersion in electrodynamics,” Annals of Physics, vol. 334, pp. 1–23, 2013.
  19. R. P. Agarwal, B. de Andrade, and G. Siracusa, “On fractional integro-differential equations with state-dependent delay,” Computers & Mathematics with Applications, vol. 62, no. 3, pp. 1143–1149, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  20. Y. Ren, Y. Qin, and R. Sakthivel, “Existence results for fractional order semilinear integro-differential evolution equations with infinite delay,” Integral Equations and Operator Theory, vol. 67, no. 1, pp. 33–49, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  21. H. Tanabe, Functional Analytic Methods for Partial Differential Equations, Marcel Dekker, New York, NY, USA, 1997. View at MathSciNet
  22. L. Byszewski, “Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem,” Journal of Mathematical Analysis and Applications, vol. 162, no. 2, pp. 494–505, 1991. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  23. J. Liang and T.-J. Xiao, “Semilinear integrodifferential equations with nonlocal initial conditions,” Computers & Mathematics with Applications, vol. 47, no. 6-7, pp. 863–875, 2004. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  24. J. Liang, J. H. Liu, and T.-J. Xiao, “Nonlocal problems for integrodifferential equations,” Dynamics of Continuous, Discrete & Impulsive Systems A, vol. 15, no. 6, pp. 815–824, 2008. View at Zentralblatt MATH · View at MathSciNet
  25. T.-J. Xiao and J. Liang, “Existence of classical solutions to nonautonomous nonlocal parabolic problems,” Nonlinear Analysis: Theory, Methods and Applications, vol. 63, no. 5–7, pp. e225–e232, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  26. R. R. Akhmerov, M. I. Kamenskii, A. S. Potapov, A. E. Rodkina, and B. N. Sadovskii, Measures of Noncompactness and Condensing Operators, vol. 55, Birkhäuser, Basel, Switzerland, 1992. View at MathSciNet
  27. M. Kamenskii, V. Obukhovskii, and P. Zecca, Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces, vol. 7 of De Gruyter Series in Nonlinear Analysis and Applications, Walter de Gruyter, Berlin, Germany, 2001. View at Publisher · View at Google Scholar · View at MathSciNet
  28. A. Friedman, Partial Differential Equations, Holt, Rinehart and Winston, New York, NY, USA, 1969. View at MathSciNet