About this Journal Submit a Manuscript Table of Contents
Abstract and Applied Analysis
Volume 2013 (2013), Article ID 737146, 7 pages
Research Article

Positioning Errors Predicting Method of Strapdown Inertial Navigation Systems Based on PSO-SVM

Space Control and Inertial Technology Research Center, Harbin Institute of Technology, Harbin 150001, China

Received 13 July 2013; Revised 27 July 2013; Accepted 27 July 2013

Academic Editor: Hamid Reza Karimi

Copyright © 2013 Xunyuan Yin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


The strapdown inertial navigation systems (SINS) have been widely used for many vehicles, such as commercial airplanes, Unmanned Aerial Vehicles (UAVs), and other types of aircrafts. In order to evaluate the navigation errors precisely and efficiently, a prediction method based on support vector machine (SVM) is proposed for positioning error assessment. Firstly, SINS error models that are used for error calculation are established considering several error resources with respect to inertial units. Secondly, flight paths for simulation are designed. Thirdly, the -SVR based prediction method is proposed to predict the positioning errors of navigation systems, and particle swarm optimization (PSO) is used for the SVM parameters optimization. Finally, 600 sets of error parameters of SINS are utilized to train the SVM model, which is used for the performance prediction of new navigation systems. By comparing the predicting results with the real errors, the latitudinal predicting accuracy is 92.73%, while the longitudinal predicting accuracy is 91.64%, and PSO is effective to increase the prediction accuracy compared with traditional SVM with fixed parameters. This method is also demonstrated to be effective for error prediction for an entire flight process. Moreover, the prediction method can save 75% of calculation time compared with analyses based on error models.