About this Journal Submit a Manuscript Table of Contents
Abstract and Applied Analysis
Volume 2013 (2013), Article ID 758676, 10 pages
http://dx.doi.org/10.1155/2013/758676
Research Article

Amplitude Modulation and Synchronization of Fractional-Order Memristor-Based Chua's Circuit

1Department of Engineering Mathematics and Physics, Faculty of Engineering, Cairo University, Giza 12613, Egypt
2NISC Research Center, Nile University, Egypt
3Department of Mathematics, Faculty of Science and Arts, Shaqra University, Saudi Arabia
4School of Mathematical Sciences, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

Received 19 July 2013; Accepted 14 October 2013

Academic Editor: Bashir Ahmad

Copyright © 2013 A. G. Radwan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. I. Podlubny, Fractional Differential Equations, vol. 198, Academic Press, San Diego, Calif, USA, 1999. View at MathSciNet
  2. L. Dorcak, Numerical Models for the Simulation of the Fractional-Order Control Systems, Technical University of Kosice, Kosice, Slovakia, 1994.
  3. A. Babakhani and D. Baleanu, “Existence and uniqueness of solution for a class of nonlinear fractional order differential equations,” Abstract and Applied Analysis, vol. 2012, Article ID 632681, 14 pages, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  4. T. Abdeljawad, B. Benli, and D. Baleanu, “A generalized q-mittag-leffler function by q-captuo fractional linear equations,” Abstract and Applied Analysis, vol. 2012, Article ID 546062, 11 pages, 2012. View at Publisher · View at Google Scholar
  5. S. K. Han, C. Kerrer, and Y. Kuramoto, “Dephasing and burstling in coupled neural oscillators,” Physical Review Letters, vol. 75, pp. 3190–3193, 1995.
  6. K. Moaddy, A. G. Radwan, K. N. Salama, S. Momani, and I. Hashim, “The fractional-order modeling and synchronization of electrically coupled neuron systems,” Computers & Mathematics with Applications, vol. 64, no. 10, pp. 3329–3339, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  7. A. G. Radwan, A. S. Elwakil, and A. M. Soliman, “Fractional-order sinusoidal oscillators: design procedure and practical examples,” IEEE Transactions on Circuits and Systems I, vol. 55, no. 7, pp. 2051–2063, 2008. View at Publisher · View at Google Scholar · View at MathSciNet
  8. A. G. Radwan, A. M. Soliman, and A. S. Elwakil, “First-order filters generalized to the fractional domain,” Journal of Circuits Systems & Computers, vol. 17, pp. 55–66, 2008.
  9. A. Shamim, A. G. Radwan, and K. N. Salama, “Fractional smith chart theory,” IEEE Microwave and Wireless Components Letters, vol. 21, no. 3, pp. 117–119, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. A. G. Radwan, “Stability analysis of the fractional-order RLC circuit,” Journal of Fractional Calculus and Applications, vol. 3, no. 1, pp. 1–15, 2012.
  11. A. G. Radwan, “Resonance and quality factor of the fractional RLC circuit,” IEEE Journal on Emerging and Selected Topics in Circuits and Systems, vol. 3, no. 3, pp. 377–385, 2013.
  12. A. G. Radwan, K. Moaddy, K. N. Salama, S. Momani, and I. Hashim, “Control and switching synchronization of fractional order chaotic systems using active control technique,” Journal of Advanced Research, 2013. View at Publisher · View at Google Scholar
  13. A. G. Radwan, S. K. Abd-El-Hafiz, and S. H. Abd-El-Haleem, “Image encryption in the fractional-order domain,” in Proceedings of the International Conference on Engineering and Technology (ICET '12), 2012.
  14. M. Feki, “An adaptive chaos synchronization scheme applied to secure communication,” Chaos, Solitons and Fractals, vol. 18, no. 1, pp. 141–148, 2003. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  15. K. Murali and M. Lakshmanan, “Secure communication using a compound signal from generalized synchronizable chaotic systems,” Physics Letters A, vol. 241, no. 6, pp. 303–310, 1998. View at Zentralblatt MATH · View at Scopus
  16. T. Yang, “A survey of chaotic secure communication systems,” International Journal of Computational Cognition, vol. 2, no. 2, pp. 81–130, 2004.
  17. I. Wedekind and U. Parlitz, “Experimental observation of synchronization and anti-synchronization of chaotic low-frequency-fluctuations in external cavity semiconductor lasers,” International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, vol. 11, no. 4, pp. 1141–1147, 2001. View at Publisher · View at Google Scholar · View at Scopus
  18. J.-b. Liu, C.-f. Ye, S.-j. Zhang, and W.-t. Song, “Anti-phase synchronization in coupled map lattices,” Physics Letters A, vol. 274, no. 1-2, pp. 27–29, 2000. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  19. M.-C. Ho, Y.-C. Hung, and C.-H. Chou, “Phase and anti-phase synchronization of two chaotic systems by using active control,” Physics Letters A, vol. 296, no. 1, pp. 43–48, 2002. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  20. G.-H. Li and S.-P. Zhou, “Anti-synchronization in different chaotic systems,” Chaos, Solitons and Fractals, vol. 32, no. 2, pp. 516–520, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Bhalekar and V. Daftardar-Gejji, “Antisynchronization of nonidentical fractional-order chaotic systems using active control,” International Journal of Differential Equations, vol. 2011, Article ID 250763, 13 pages, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  22. L. M. Pecora and T. L. Carroll, “Synchronization in chaotic systems,” Physical Review Letters, vol. 64, no. 8, pp. 821–824, 1990. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  23. L. M. Pecora and T. L. Carroll, “Driving systems with chaotic signals,” Physical Review A, vol. 44, no. 4, pp. 2374–2383, 1991. View at Publisher · View at Google Scholar · View at Scopus
  24. D. Bin, W. Jiang, and F. Xiangyang, “Chaotic synchronization with gap junction of multi-neurons in external electrical stimulation,” Chaos, Solitons and Fractals, vol. 25, no. 5, pp. 1185–1192, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  25. J. Yan and C. Li, “On chaos synchronization of fractional differential equations,” Chaos, Solitons & Fractals, vol. 32, no. 2, pp. 725–735, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  26. L. O. Chua, M. Itoh, L. Kocarev, and K. Eckert, “Chaos synchronization in Chua's circuit,” Journal of Circuits, Systems, and Computers, vol. 3, no. 1, pp. 93–108, 1993. View at Publisher · View at Google Scholar · View at MathSciNet
  27. C. Li and T. Zhou, “Synchronization in fractional-order differential systems,” Physica D, vol. 212, no. 1-2, pp. 111–125, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  28. Y. Yu, H.-X. Li, and Y. Su, “The synchronization of three chaotic fractional-order Lorenz systems with bidirectional coupling,” Journal of Physics, vol. 96, no. 1, Article ID 012113, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. Z. M. Odibat, N. Corson, M. A. Aziz-Alaoui, and C. Bertelle, “Synchronization of chaotic fractional-order systems via linear control,” International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, vol. 20, no. 1, pp. 81–97, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  30. S. Bhalekar and V. Daftardar-Gejji, “Synchronization of different fractional order chaotic systems using active control,” Communications in Nonlinear Science and Numerical Simulation, vol. 15, pp. 3536–3546, 2010.
  31. A. G. Radwan, K. Moaddy, and S. Momani, “Stability and non-standard finite difference method of the generalized Chua's circuit,” Computers & Mathematics with Applications, vol. 62, no. 3, pp. 961–970, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  32. I. Petráš, “Fractional-order memristor-based Chua's circuit,” IEEE Transactions on Circuits and Systems II, vol. 57, no. 12, pp. 975–979, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. G. Hussian, M. Alnaser, and S. Momani, “Non-standard discretization of fractional differential equations,” in Proceedings of the 8th seminar of differential equations and dynamical systems, 2008.
  34. Applications of Nonstandard Finite Difference Schemes, World Scientific Publishing, River Edge, NJ, USA, 2000. View at Publisher · View at Google Scholar · View at MathSciNet
  35. A. G. Radwan, M. A. Zidan, and K. N. Salama, “HP memristor mathematical model for periodic signals and DC,” in Proceedings of the IEEE International Midwest Symposium on Circuits and Systems, pp. 861–864, 2010.
  36. A. Talukdar, A. G. Radwan, and K. N. Salama, “Non linear dynamics of memristor based 3rd order oscillatory system,” Microelectronics Journal, vol. 43, no. 3, pp. 169–175, 2012. View at Publisher · View at Google Scholar · View at Scopus
  37. A. G. Radwan, M. A. Zidan, and K. N. Salama, “HP Memristor mathematical model for periodic signals and DC,” in Proceedings of the 53rd IEEE International Midwest Symposium on Circuits and Systems (MWSCAS '10), pp. 861–864, Seattle, Wash, USA, August 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. A. G. Radwan, M. A. Zidan, and K. N. Salama, “On the mathematical modeling of Memristors,” in Proceedings of the International Conference on Microelectronics (ICM '10), pp. 284–287, December 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. W. Hahn, Stability of Motion, Springer, New York, NY, USA, 1967. View at MathSciNet
  40. G. Kolumbán, M. P. Kennedy, and L. O. Chua, “The role of synchronization in digital communications using chaos. II. Chaotic modulation and chaotic synchronization,” IEEE Transactions on Circuits and Systems I, vol. 45, no. 11, pp. 1129–1140, 1998. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  41. N. J. Corron and D. W. Hahs, “A new approach to communications using chaotic signals,” IEEE Transactions on Circuits and Systems I, vol. 44, no. 5, pp. 373–382, 1997. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus