About this Journal Submit a Manuscript Table of Contents
Abstract and Applied Analysis
Volume 2013 (2013), Article ID 765685, 9 pages
http://dx.doi.org/10.1155/2013/765685
Research Article

On Bilipschitz Extensions in Real Banach Spaces

Department of Mathematics, Hunan Normal University, Changsha, Hunan 410081, China

Received 11 October 2012; Accepted 20 February 2013

Academic Editor: Beong In Yun

Copyright © 2013 M. Huang and Y. Li. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Väisälä, “The free quasiworld, freely quasiconformal and related maps in Banach spaces,” Banach Center Publications, vol. 48, pp. 55–118, 1999.
  2. R. Klén, A. Rasila, and J. Talponen, “Quasihyperbolic geometry in euclidean and Banach spaces,” in Proceedings of the ICM2010 Satellite Conference International Workshop on Harmonic and Quasiconformal Mappings (HMQ '10), D. Minda, S. Ponnusamy, and N. Shanmugalingam, Eds., August 2010, Journal of Analysis, vol. 18, pp. 261–278, 2011, http://arxiv.org/abs/1104.3745.
  3. A. Rasila and J. Talponen, “Convexity properties of quasihyperbolic balls on Banach,” Annales Academiæ Scientiarum Fennicæ, vol. 37, no. 1, pp. 215–228, 2012.
  4. J. Väisälä, “Free quasiconformality in Banach spaces. I,” Annales Academiae Scientiarum Fennicae, vol. 15, no. 2, pp. 355–379, 1990. View at MathSciNet
  5. J. Väisälä, “Free quasiconformality in Banach spaces. II,” Annales Academiae Scientiarum Fennicae, vol. 16, no. 2, pp. 255–310, 1991. View at MathSciNet
  6. P. Tukia and J. Väisälä, “Quasisymmetric embeddings of metric spaces,” Suomalaisen Tiedeakatemian Toimituksia, vol. 5, no. 1, pp. 97–114, 1980. View at MathSciNet
  7. J. Väisälä, “Quasimöbius maps,” Journal d'Analyse Mathematique, vol. 44, pp. 218–234, 1985.
  8. J. Väisälä, “Uniform domains,” The Tohoku Mathematical Journal, vol. 40, no. 1, pp. 101–118, 1988. View at Publisher · View at Google Scholar · View at MathSciNet
  9. O. Martio, “Definitions for uniform domains,” Suomalaisen Tiedeakatemian Toimituksia, vol. 5, no. 1, pp. 197–205, 1980. View at MathSciNet
  10. L. V. Ahlfors, “Quasiconformal reflections,” Acta Mathematica, vol. 109, pp. 291–301, 1963. View at MathSciNet
  11. F. W. Gehring, “Injectivity of local quasi-isometries,” Commentarii Mathematici Helvetici, vol. 57, no. 2, pp. 202–220, 1982. View at Publisher · View at Google Scholar · View at MathSciNet
  12. P. Tukia and J. Väisälä, “Bilipschitz extensions of maps having quasiconformal extensions,” Mathematische Annalen, vol. 269, pp. 651–572, 1984.
  13. F. W. Gehring, “Extension of quasi-isometric embeddings of Jordan curves,” Complex Variables, vol. 5, no. 2–4, pp. 245–263, 1986. View at MathSciNet
  14. F. W. Gehring and B. P. Palka, “Quasiconformally homogeneous domains,” Journal d'Analyse Mathématique, vol. 30, pp. 172–199, 1976. View at MathSciNet
  15. J. Väisälä, “Quasihyperbolic geodesics in convex domains,” Results in Mathematics, vol. 48, no. 1-2, pp. 184–195, 2005. View at MathSciNet
  16. P. Hästö, Z. Ibragimov, D. Minda, S. Ponnusamy, and S. Sahoo, “Isometries of some hyperbolic-type path metrics, and the hyperbolic medial axis,” in The Tradition of Ahlfors-Bers, vol. 432 of Contemporary Mathematics, pp. 63–74, American Mathematical Society, Providence, RI, USA, 2007. View at Publisher · View at Google Scholar · View at MathSciNet
  17. F. W. Gehring and B. G. Osgood, “Uniform domains and the quasihyperbolic metric,” Journal d'Analyse Mathématique, vol. 36, pp. 50–74, 1979. View at Publisher · View at Google Scholar · View at MathSciNet
  18. M. Vuorinen, “Conformal invariants and quasiregular mappings,” Journal d'Analyse Mathématique, vol. 45, pp. 69–115, 1985. View at Publisher · View at Google Scholar · View at MathSciNet
  19. J. Väisälä, “Relatively and inner uniform domains,” Conformal Geometry and Dynamics, vol. 2, pp. 56–88, 1998. View at Publisher · View at Google Scholar · View at MathSciNet
  20. M. Huang, Y. Li, M. Vuorinen, and X. Wang, “On quasimöbius maps in real Banach spaces,” To appear in Israel Journal of Mathematics.
  21. Y. Li and X. Wang, “Unions of John domains and uniform domains in real normed vector spaces,” Annales Academiæ Scientiarum Fennicæ, vol. 35, no. 2, pp. 627–632, 2010. View at Publisher · View at Google Scholar · View at MathSciNet
  22. M. Huang and Y. Li, “Decomposition properties of John domains in normed vector spaces,” Journal of Mathematical Analysis and Applications, vol. 388, no. 1, pp. 191–197, 2012. View at Publisher · View at Google Scholar · View at MathSciNet