About this Journal Submit a Manuscript Table of Contents
Abstract and Applied Analysis
Volume 2013 (2013), Article ID 768976, 12 pages
http://dx.doi.org/10.1155/2013/768976
Research Article

Explicit Multistep Mixed Finite Element Method for RLW Equation

1School of Mathematical Sciences, Inner Mongolia University, Hohhot 010021, China
2School of Statistics and Mathematics, Inner Mongolia University of Finance and Economics, Hohhot 010070, China

Received 15 February 2013; Revised 22 April 2013; Accepted 30 April 2013

Academic Editor: Marco Donatelli

Copyright © 2013 Yang Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. H. Peregrine, “Calculations of the development of an undular bore,” Journal of Fluid Mechanics, vol. 25, no. 2, pp. 321–330, 1966.
  2. T. B. Benjamin, J. L. Bona, and J. J. Mahony, “Model equations for long waves in nonlinear dispersive systems,” Philosophical Transactions of the Royal Society of London A, vol. 272, no. 1220, pp. 47–78, 1972. View at MathSciNet
  3. P. J. Olver, “Euler operators and conservation laws of the BBM equation,” Mathematical Proceedings of the Cambridge Philosophical Society, vol. 85, no. 1, pp. 143–160, 1979. View at Publisher · View at Google Scholar · View at MathSciNet
  4. B. Saka and I. Dağ, “Quartic B-spline collocation algorithms for numerical solution of the RLW equation,” Numerical Methods for Partial Differential Equations, vol. 23, no. 3, pp. 731–751, 2007. View at Publisher · View at Google Scholar · View at MathSciNet
  5. J. L. Bona and P. J. Bryant, “A mathematical model for long waves generated by wavemakers in non-linear dispersive systems,” Mathematical Proceedings of the Cambridge Philosophical Society, vol. 73, no. 5, pp. 391–405, 1973. View at MathSciNet
  6. D. Bhardwaj and R. Shankar, “A computational method for regularized long wave equation,” Computers & Mathematics with Applications, vol. 40, no. 12, pp. 1397–1404, 2000. View at Publisher · View at Google Scholar · View at MathSciNet
  7. X. H. Zhao, D. S. Li, and D. M. Shi, “A finite difference scheme for RLW-Burgers equation,” Journal of Applied Mathematics & Informatics, vol. 26, no. 3-4, pp. 573–581, 2008.
  8. L. Zhang, “A finite difference scheme for generalized regularized long-wave equation,” Applied Mathematics and Computation, vol. 168, no. 2, pp. 962–972, 2005. View at Publisher · View at Google Scholar · View at MathSciNet
  9. I. Dağ, A. Dogan, and B. Saka, “B-spline collocation methods for numerical solutions of the RLW equation,” International Journal of Computer Mathematics, vol. 80, no. 6, pp. 743–757, 2003. View at Publisher · View at Google Scholar · View at MathSciNet
  10. A. Esen and S. Kutluay, “Application of a lumped Galerkin method to the regularized long wave equation,” Applied Mathematics and Computation, vol. 174, no. 2, pp. 833–845, 2006. View at Publisher · View at Google Scholar · View at MathSciNet
  11. I. Dağ, B. Saka, and D. Irk, “Galerkin method for the numerical solution of the RLW equation using quintic B-splines,” Journal of Computational and Applied Mathematics, vol. 190, no. 1-2, pp. 532–547, 2006. View at Publisher · View at Google Scholar · View at MathSciNet
  12. K. R. Raslan, “A computational method for the regularized long wave (RLW) equation,” Applied Mathematics and Computation, vol. 167, no. 2, pp. 1101–1118, 2005. View at Publisher · View at Google Scholar · View at MathSciNet
  13. L. Wahlbin, “Error estimates for a Galerkin method for a class of model equations for long waves,” Numerische Mathematik, vol. 23, pp. 289–303, 1975. View at MathSciNet
  14. Z. D. Luo and R. X. Liu, “Mixed finite element analysis and numerical solitary solution for the RLW equation,” SIAM Journal on Numerical Analysis, vol. 36, no. 1, pp. 89–104, 1999. View at Publisher · View at Google Scholar · View at MathSciNet
  15. L. Guo and H. Chen, “H1-Galerkin mixed finite element method for the regularized long wave equation,” Computing, vol. 77, no. 2, pp. 205–221, 2006. View at Publisher · View at Google Scholar · View at MathSciNet
  16. H. M. Gu and N. Chen, “Least-squares mixed finite element methods for the RLW equations,” Numerical Methods for Partial Differential Equations, vol. 24, no. 3, pp. 749–758, 2008. View at Publisher · View at Google Scholar · View at MathSciNet
  17. J. L. Bona, W. G. Pritchard, and L. R. Scott, “Numerical schemes for a model for nonlinear dispersive waves,” Journal of Computational Physics, vol. 60, no. 2, pp. 167–186, 1985. View at Publisher · View at Google Scholar · View at MathSciNet
  18. S. U. Islam, S. Haq, and A. Ali, “A meshfree method for the numerical solution of the RLW equation,” Journal of Computational and Applied Mathematics, vol. 223, no. 2, pp. 997–1012, 2009. View at Publisher · View at Google Scholar · View at MathSciNet
  19. D. Kaya, “A numerical simulation of solitary-wave solutions of the generalized regularized long-wave equation,” Applied Mathematics and Computation, vol. 149, no. 3, pp. 833–841, 2004. View at Publisher · View at Google Scholar · View at MathSciNet
  20. L. Q. Mei and Y. P. Chen, “Explicit multistep method for the numerical solution of RLW equation,” Applied Mathematics and Computation, vol. 218, no. 18, pp. 9547–9554, 2012. View at Publisher · View at Google Scholar · View at MathSciNet
  21. L. R. T. Gardner, G. A. Gardner, and A. Dogan, “A least-squares finite element scheme for the RLW equation,” Communications in Numerical Methods in Engineering, vol. 12, no. 11, pp. 795–804, 1996. View at Publisher · View at Google Scholar · View at MathSciNet
  22. I. Dağ, “Least squares quadratic B-spline finite element method for the regularized long wave equation,” Computer Methods in Applied Mechanics and Engineering, vol. 182, no. 1-2, pp. 205–215, 2000.
  23. I. Dağ and M. N. Özer, “Approximation of the RLW equation by the least square cubic B-spline finite element method,” Applied Mathematical Modelling, vol. 25, no. 3, pp. 221–231, 2001. View at Publisher · View at Google Scholar
  24. A. Dogan, “Numerical solution of RLW equation using linear finite elements within Galerkin’s method,” Applied Mathematical Modelling, vol. 26, no. 7, pp. 771–783, 2002.
  25. P. Chatzipantelidis, “Explicit multistep methods for nonstiff partial differential equations,” Applied Numerical Mathematics, vol. 27, no. 1, pp. 13–31, 1998. View at Publisher · View at Google Scholar · View at MathSciNet
  26. G. Akrivis, O. Karakashian, and F. Karakatsani, “Linearly implicit methods for nonlinear evolution equations,” Numerische Mathematik, vol. 94, no. 3, pp. 403–418, 2003. View at Publisher · View at Google Scholar · View at MathSciNet
  27. A. K. Pani, R. K. Sinha, and A. K. Otta, “An H1-Galerkin mixed method for second order hyperbolic equations,” International Journal of Numerical Analysis and Modeling, vol. 1, no. 2, pp. 111–129, 2004. View at MathSciNet
  28. M. F. Wheeler, “A priori L2 error estimates for Galerkin approximations to parabolic partial differential equations,” SIAM Journal on Numerical Analysis, vol. 10, pp. 723–759, 1973. View at MathSciNet
  29. J. L. Bona, W. G. Pritchard, and L. R. Scott, “An evaluation of a model equation for water waves,” Philosophical Transactions of the Royal Society of London A, vol. 302, no. 1471, pp. 457–510, 1981. View at Publisher · View at Google Scholar · View at MathSciNet