About this Journal Submit a Manuscript Table of Contents
Abstract and Applied Analysis
Volume 2013 (2013), Article ID 805104, 6 pages
http://dx.doi.org/10.1155/2013/805104
Research Article

General Split Feasibility Problems in Hilbert Spaces

1Young Researchers Club, Babol Branch, Islamic Azad University, Babol, Iran
2Department of Mathematics, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia

Received 25 October 2012; Accepted 23 December 2012

Academic Editor: Qamrul Hasan Ansari

Copyright © 2013 Mohammad Eslamian and Abdul Latif. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. L. Combettes, “The convex feasibility problem in image recovery,” in Advances in Imaging and Electron Physics, P. Hawkes, Ed., vol. 95, pp. 155–270, Academic Press, New York, NY, USA, 1996.
  2. Y. Censor and T. Elfving, “A multiprojection algorithm using Bregman projections in a product space,” Numerical Algorithms, vol. 8, no. 2–4, pp. 221–239, 1994. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  3. C. Byrne, “Iterative oblique projection onto convex sets and the split feasibility problem,” Inverse Problems, vol. 18, no. 2, pp. 441–453, 2002. View at Publisher · View at Google Scholar · View at MathSciNet
  4. L.-C. Ceng, Q. H. Ansari, and J.-C. Yao, “Relaxed extragradient methods for finding minimum-norm solutions of the split feasibility problem,” Nonlinear Analysis: Theory, Methods & Applications, vol. 75, no. 4, pp. 2116–2125, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  5. L.-C. Ceng, Q. H. Ansari, and J.-C. Yao, “An extragradient method for solving split feasibility and fixed point problems,” Computers & Mathematics with Applications, vol. 64, no. 4, pp. 633–642, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  6. Y. Censor, T. Elfving, N. Kopf, and T. Bortfeld, “The multiple-sets split feasibility problem and its applications for inverse problems,” Inverse Problems, vol. 21, no. 6, pp. 2071–2084, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  7. F. Wang and H.-K. Xu, “Cyclic algorithms for split feasibility problems in Hilbert spaces,” Nonlinear Analysis: Theory, Methods & Applications, vol. 74, no. 12, pp. 4105–4111, 2011. View at Publisher · View at Google Scholar · View at MathSciNet
  8. H.-K. Xu, “Iterative methods for the split feasibility problem in infinite-dimensional Hilbert spaces,” Inverse Problems, vol. 26, no. 10, Article ID 105018, p. 17, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  9. Y. Censor, A. Motova, and A. Segal, “Perturbed projections and subgradient projections for the multiple-sets split feasibility problem,” Journal of Mathematical Analysis and Applications, vol. 327, no. 2, pp. 1244–1256, 2007. View at Publisher · View at Google Scholar · View at MathSciNet
  10. H.-K. Xu, “A variable Krasnosel'skii-Mann algorithm and the multiple-set split feasibility problem,” Inverse Problems, vol. 22, no. 6, pp. 2021–2034, 2006. View at Publisher · View at Google Scholar · View at MathSciNet
  11. Q. Yang, “The relaxed CQ algorithm solving the split feasibility problem,” Inverse Problems, vol. 20, no. 4, pp. 1261–1266, 2004. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  12. H. H. Bauschke and J. M. Borwein, “On projection algorithms for solving convex feasibility problems,” SIAM Review, vol. 38, no. 3, pp. 367–426, 1996. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  13. Y. Alber and D. Butnariu, “Convergence of Bregman projection methods for solving consistent convex feasibility problems in reflexive Banach spaces,” Journal of Optimization Theory and Applications, vol. 92, no. 1, pp. 33–61, 1997. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  14. B. Qu and N. Xiu, “A note on the CQ algorithm for the split feasibility problem,” Inverse Problems, vol. 21, no. 5, pp. 1655–1665, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  15. J. Zhao and Q. Yang, “Several solution methods for the split feasibility problem,” Inverse Problems, vol. 21, no. 5, pp. 1791–1799, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  16. Y. Censor and A. Segal, “The split common fixed point problem for directed operators,” Journal of Convex Analysis, vol. 16, no. 2, pp. 587–600, 2009. View at Zentralblatt MATH · View at MathSciNet
  17. Y. Yao, W. Jigang, and Y.-C. Liou, “Regularized methods for the split feasibility problem,” Abstract and Applied Analysis, vol. 2012, Article ID 140679, 13 pages, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  18. Y. Dang and Y. Gao, “The strong convergence of a KM-CQ-like algorithm for a split feasibility problem,” Inverse Problems, vol. 27, article 015007, p. 9, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  19. F. Wang and H.-K. Xu, “Approximating curve and strong convergence of the CQ algorithm for the split feasibility problem,” Journal of Inequalities and Applications, vol. 2010, Article ID 102085, 13 pages, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  20. L.-C. Ceng, Q. H. Ansari, and J.-C. Yao, “Mann type iterative methods for finding a common solution of split feasibility and fixed point problems,” Positivity, vol. 16, no. 3, pp. 471–495, 2012. View at Publisher · View at Google Scholar · View at MathSciNet
  21. A. Moudafi, “Viscosity approximation methods for fixed-points problems,” Journal of Mathematical Analysis and Applications, vol. 241, no. 1, pp. 46–55, 2000. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  22. S.-S. Chang, J. K. Kim, and X. R. Wang, “Modified block iterative algorithm for solving convex feasibility problems in Banach spaces,” Journal of Inequalities and Applications, vol. 2010, Article ID 869684, 14 pages, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  23. H.-K. Xu, “Iterative algorithms for nonlinear operators,” Journal of the London Mathematical Society, vol. 66, no. 1, pp. 240–256, 2002. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  24. P.-E. Maingé, “Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization,” Set-Valued Analysis, vol. 16, no. 7-8, pp. 899–912, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  25. K. Goebel and W. A. Kirk, Topics in Metric Fixed Point Theory, vol. 28, Cambridge University Press, Cambridge, UK, 1990. View at Publisher · View at Google Scholar · View at MathSciNet