About this Journal Submit a Manuscript Table of Contents
Abstract and Applied Analysis
Volume 2013 (2013), Article ID 813635, 5 pages
http://dx.doi.org/10.1155/2013/813635
Research Article

Regularization Method for the Approximate Split Equality Problem in Infinite-Dimensional Hilbert Spaces

Department of Mathematics, Tianjin Polytechnic University, Tianjin 300387, China

Received 31 March 2013; Accepted 12 April 2013

Academic Editor: Yisheng Song

Copyright © 2013 Rudong Chen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y. Censor and T. Elfving, “A multiprojection algorithm using Bregman projections in a product space,” Numerical Algorithms, vol. 8, no. 2–4, pp. 221–239, 1994. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  2. C. Byrne, “Iterative oblique projection onto convex sets and the split feasibility problem,” Inverse Problems, vol. 18, no. 2, pp. 441–453, 2002. View at Publisher · View at Google Scholar · View at MathSciNet
  3. C. Byrne, “A unified treatment of some iterative algorithms in signal processing and image reconstruction,” Inverse Problems, vol. 20, no. 1, pp. 103–120, 2004. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  4. Q. Yang, “The relaxed CQ algorithm solving the split feasibility problem,” Inverse Problems, vol. 20, no. 4, pp. 1261–1266, 2004. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  5. B. Qu and N. Xiu, “A note on the CQ algorithm for the split feasibility problem,” Inverse Problems, vol. 21, no. 5, pp. 1655–1665, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  6. B. Qu and N. Xiu, “A new halfspace-relaxation projection method for the split feasibility problem,” Linear Algebra and its Applications, vol. 428, no. 5-6, pp. 1218–1229, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  7. J. Zhao and Q. Yang, “Several solution methods for the split feasibility problem,” Inverse Problems, vol. 21, no. 5, pp. 1791–1799, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  8. H.-K. Xu, “Iterative methods for the split feasibility problem in infinite-dimensional Hilbert spaces,” Inverse Problems, vol. 26, no. 10, Article ID 105018, p. 17, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  9. L.-C. Ceng, Q. H. Ansari, and J.-C. Yao, “Relaxed extragradient methods for finding minimum-norm solutions of the split feasibility problem,” Nonlinear Analysis A: Theory and Methods, vol. 75, no. 4, pp. 2116–2125, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  10. A. Moudafi, “Alternating CQ-algorithm for convex feasibility and split fixed-point problems,” Journal of Nonlinear and Convex Analysis, 2013.
  11. A. Moudafi, “A relaxed alternating CQ-algorithm for convex feasibility problems,” Nonlinear Analysis. Theory, Methods & Applications A: Theory and Methods, vol. 79, pp. 117–121, 2013. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  12. C. Byrne and A. Moudafi, “Extensions of the CQ algorithm for the split feasibility and split equality problems,” 2013, hal-00776640-version 1.
  13. H. K. Xu and T. H. Kim, “Convergence of hybrid steepest-descent methods for variational inequalities,” Journal of Optimization Theory and Applications, vol. 119, no. 1, pp. 185–201, 2003. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  14. A. Moudafi, “Coupling proximal algorithm and Tikhonov method,” Nonlinear Times and Digest, vol. 1, no. 2, pp. 203–209, 1994. View at Zentralblatt MATH · View at MathSciNet