About this Journal Submit a Manuscript Table of Contents
Abstract and Applied Analysis
Volume 2013 (2013), Article ID 814912, 8 pages
http://dx.doi.org/10.1155/2013/814912
Research Article

A Self-Adjusting Spectral Conjugate Gradient Method for Large-Scale Unconstrained Optimization

1School of Foreign Languages, Gannan Normal University, Ganzhou 341000, China
2School of Mathematics and Computer Sciences, Gannan Normal University, Ganzhou 341000, China

Received 21 February 2013; Accepted 17 March 2013

Academic Editor: Guoyin Li

Copyright © 2013 Yuanying Qiu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y. H. Dai and Y. Yuan, “An efficient hybrid conjugate gradient method for unconstrained optimization,” Annals of Operations Research, vol. 103, pp. 33–47, 2001. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  2. Y. H. Dai and Y. Yuan, “A nonlinear conjugate gradient method with a strong global convergence property,” SIAM Journal on Optimization, vol. 10, no. 1, pp. 177–182, 1999. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  3. Z. X. Wei, G. Y. Li, and L. Q. Qi, “Global convergence of the Polak-Ribière-Polyak conjugate gradient method with an Armijo-type inexact line search for nonconvex unconstrained optimization problems,” Mathematics of Computation, vol. 77, no. 264, pp. 2173–2193, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  4. W. W. Hager and H. Zhang, “A new conjugate gradient method with guaranteed descent and an efficient line search,” SIAM Journal on Optimization, vol. 16, no. 1, pp. 170–192, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  5. L. Zhang, W. Zhou, and D.-H. Li, “A descent modified Polak-Ribière-Polyak conjugate gradient method and its global convergence,” IMA Journal of Numerical Analysis, vol. 26, no. 4, pp. 629–640, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  6. G. Yuan, “Modified nonlinear conjugate gradient methods with sufficient descent property for large-scale optimization problems,” Optimization Letters, vol. 3, no. 1, pp. 11–21, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  7. G. Yu, L. Guan, and W. Chen, “Spectral conjugate gradient methods with sufficient descent property for large-scale unconstrained optimization,” Optimization Methods and Software, vol. 23, no. 2, pp. 275–293, 2008. View at Publisher · View at Google Scholar · View at MathSciNet
  8. G. Yu, Nonlinear self-scaling conjugate gradient methods for large-scale optimization problems [Ph.D. thesis], Sun Yat-Sen University, Guangzhou, China, 2007.
  9. G. Li, C. Tang, and Z. Wei, “New conjugacy condition and related new conjugate gradient methods for unconstrained optimization,” Journal of Computational and Applied Mathematics, vol. 202, no. 2, pp. 523–539, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  10. Y.-H. Dai, “New properties of a nonlinear conjugate gradient method,” Numerische Mathematik, vol. 89, no. 1, pp. 83–98, 2001. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  11. J. C. Gilbert and J. Nocedal, “Global convergence properties of conjugate gradient methods for optimization,” SIAM Journal on Optimization, vol. 2, no. 1, pp. 21–42, 1992. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  12. E. D. Dolan and J. J. Moré, “Benchmarking optimization software with performance profiles,” Mathematical Programming, vol. 91, no. 2, pp. 201–213, 2002. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet