About this Journal Submit a Manuscript Table of Contents
Abstract and Applied Analysis
Volume 2013 (2013), Article ID 819315, 14 pages
http://dx.doi.org/10.1155/2013/819315
Review Article

Compactness Conditions in the Study of Functional, Differential, and Integral Equations

1Department of Mathematics, Rzeszów University of Technology, Aleja Powstańców Warszawy 8, 35-959 Rzeszów, Poland
2Departamento de Mathemáticas, Universidad de Las Palmas de Gran Canaria, Campus de Tafira Baja, 35017 Las Palmas de Gran Canaria, Spain

Received 13 December 2012; Accepted 2 January 2013

Academic Editor: Beata Rzepka

Copyright © 2013 Józef Banaś and Kishin Sadarangani. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Q. H. Ansari, Ed., Topics in Nonlinear Analysis and Optimization, World Education, Delhi, India, 2012.
  2. N. Bourbaki, Elements of Mathematics. General Topology, Springer, Berlin, Germany, 1989.
  3. K. Deimling, Nonlinear Functional Analysis, Springer, Berlin, Germany, 1985. View at MathSciNet
  4. W. Rudin, Real and Complex Analysis, McGraw-Hill, New York, NY, USA, 1987. View at MathSciNet
  5. W. Rudin, Functional Analysis, McGraw-Hill, New York, NY, USA, 1991. View at MathSciNet
  6. R. P. Agarwal, M. Meehan, and D. O'Regan, Fixed Point Theory and Applications, vol. 141, Cambridge University Press, Cambridge, UK, 2001. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  7. A. Granas and J. Dugundji, Fixed Point Theory, Springer, New York, NY, USA, 2003. View at MathSciNet
  8. R. R. Akhmerov, M. I. Kamenskiĭ, A. S. Potapov, A. E. Rodkina, and B. N. Sadovskiĭ, Measures of Noncompactness and Condensing Operators, vol. 55 of Operator Theory: Advances and Applications, Birkhäuser, Basel, Switzerland, 1992. View at MathSciNet
  9. J. Appell and P. P. Zabrejko, Nonlinear Superposition Operators, vol. 95, Cambridge University Press, Cambridge, UK, 1990. View at Publisher · View at Google Scholar · View at MathSciNet
  10. J. Banaś and K. Goebel, Measures of Noncompactness in Banach Spaces, vol. 60 of Lecture Notes in Pure and Applied Mathematics, Marcel Dekker, New York, NY, USA, 1980. View at MathSciNet
  11. D. R. Smart, Fixed Point Theorems, Cambridge University Press, Cambridge, UK, 1980.
  12. J. Schauder, “Zur Theorie stetiger Abbildungen in Funktionalräumen,” Mathematische Zeitschrift, vol. 26, no. 1, pp. 47–65, 1927. View at Publisher · View at Google Scholar · View at MathSciNet
  13. J. Banaś, “Measures of noncompactness in the study of solutions of nonlinear differential and integral equations,” Central European Journal of Mathematics, vol. 10, no. 6, pp. 2003–2011, 2012. View at Publisher · View at Google Scholar · View at MathSciNet
  14. S. Mazur, “Über die kleinste konvexe Menge, die eine gegeben Menge enhält,” Studia Mathematica, vol. 2, pp. 7–9, 1930.
  15. C. Corduneanu, Integral Equations and Applications, Cambridge University Press, Cambridge, UK, 1991. View at Publisher · View at Google Scholar · View at MathSciNet
  16. J. Kisyński, “Sur l'existence et l'unicité des solutions des problèmes classiques relatifs à l'équation s=F(x,y,z,p,q),” vol. 11, pp. 73–112, 1957. View at MathSciNet
  17. P. P. Zabrejko, A. I. Koshelev, M. A. Krasnosel'skii, S. G. Mikhlin, L. S. Rakovschik, and V. J. Stetsenko, Integral Equations, Nordhoff, Leyden, Mass, USA, 1975.
  18. J. Banaś, “An existence theorem for nonlinear Volterra integral equation with deviating argument,” Rendiconti del Circolo Matematico di Palermo II, vol. 35, no. 1, pp. 82–89, 1986. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  19. M. A. Krasnosel'skii, Topological Methods in the Theory of Nonlinear Integral Equations, Pergamon, New York, NY, USA, 1964. View at MathSciNet
  20. J. Garcia-Falset, K. Latrach, E. Moreno-Gálvez, and M.-A. Taoudi, “Schaefer-Krasnoselskii fixed point theorems using a usual measure of weak noncompactness,” Journal of Differential Equations, vol. 252, no. 5, pp. 3436–3452, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  21. T. A. Burton, “A fixed-point theorem of Krasnoselskii,” Applied Mathematics Letters, vol. 11, no. 1, pp. 85–88, 1998. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  22. J. Banaś, K. Balachandran, and D. Julie, “Existence and global attractivity of solutions of a nonlinear functional integral equation,” Applied Mathematics and Computation, vol. 216, no. 1, pp. 261–268, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  23. J. Banaś and B. Rzepka, “An application of a measure of noncompactness in the study of asymptotic stability,” Applied Mathematics Letters, vol. 16, no. 1, pp. 1–6, 2003. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  24. X. Hu and J. Yan, “The global attractivity and asymptotic stability of solution of a nonlinear integral equation,” Journal of Mathematical Analysis and Applications, vol. 321, no. 1, pp. 147–156, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  25. H. Schaefer, “Über die Methode der a priori-Schranken,” Mathematische Annalen, vol. 129, pp. 415–416, 1955. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  26. T. A. Burton and C. Kirk, “A fixed point theorem of Krasnoselskii-Schaefer type,” Mathematische Nachrichten, vol. 189, pp. 23–31, 1998. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  27. P. Kumlin, A Note on Fixed Point Theory, Mathematics, Chalmers and GU, 2003/2004.
  28. J. Banaś and I. J. Cabrera, “On existence and asymptotic behaviour of solutions of a functional integral equation,” Nonlinear Analysis. Theory, Methods & Applications A, vol. 66, no. 10, pp. 2246–2254, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  29. J. Daneš, “On densifying and related mappings and their application in nonlinear functional analysis,” in Theory of Nonlinear Operators, pp. 15–56, Akademie, Berlin, Germany, 1974. View at Zentralblatt MATH · View at MathSciNet
  30. A. Aghajani, J. Banaś, and Y. Jalilian, “Existence of solutions for a class of nonlinear Volterra singular integral equations,” Computers & Mathematics with Applications, vol. 62, no. 3, pp. 1215–1227, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  31. J. Banaś, A. Hajnosz, and S. Wędrychowicz, “On the equation x'=f(t,x) in Banach spaces,” Commentationes Mathematicae Universitatis Carolinae, vol. 23, no. 2, pp. 233–247, 1982. View at Zentralblatt MATH · View at MathSciNet
  32. J. Banaś, A. Hajnosz, and S. Wędrychowicz, “On existence and local characterization of solutions of ordinary differential equations in Banach spaces,” in Proceedings of the 2nd Conference on Differential Equations and Applications, pp. 55–58, Rousse, Bulgaria, 1982. View at Zentralblatt MATH
  33. J. Banaś, “Applications of measures of noncompactness to various problems,” Zeszyty Naukowe Politechniki Rzeszowskiej, no. 5, p. 115, 1987. View at Zentralblatt MATH · View at MathSciNet
  34. J. Dieudonné, “Deux examples singuliers d'equations differentielles,” Acta Scientiarum Mathematicarum, vol. 12, pp. 38–40, 1950.
  35. J. Kisyński, “Sur les équations différentielles dans les espaces de Banach,” Bulletin de l'Académie Polonaise des Sciences, vol. 7, pp. 381–385, 1959. View at Zentralblatt MATH · View at MathSciNet
  36. C. Olech, “On the existence and uniqueness of solutions of an ordinary differential equation in the case of Banach space,” Bulletin de l'Académie Polonaise des Sciences, vol. 8, pp. 667–673, 1960. View at Zentralblatt MATH · View at MathSciNet
  37. T. Ważewski, “Sur l'existence et l'unicité des intégrales des équations différentielles ordinaries au cas de l'espace de Banach,” Bulletin de l'Académie Polonaise des Sciences, vol. 8, pp. 301–305, 1960. View at MathSciNet
  38. K. Deimling, Ordinary Differential Equations in Banach Spaces, vol. 596 of Lecture Notes in Mathematics, Springer, Berlin, Germany, 1977. View at Zentralblatt MATH · View at MathSciNet
  39. W. Walter, Differential and Integral Inequalities, Springer, Berlin, Germany, 1970. View at MathSciNet
  40. A. Ambrosetti, “Un teorema di esistenza per le equazioni differenziali negli spazi di Banach,” Rendiconti del Seminario Matematico della Università di Padova, vol. 39, pp. 349–361, 1967. View at MathSciNet
  41. K. Deimling, “On existence and uniqueness for Cauchy's problem in infinite dimensional Banach spaces,” Proceedings of the Colloquium on Mathematics, vol. 15, pp. 131–142, 1975.
  42. K. Goebel and W. Rzymowski, “An existence theorem for the equation x'=f(t,x) in Banach space,” Bulletin de l'Académie Polonaise des Sciences, vol. 18, pp. 367–370, 1970. View at MathSciNet
  43. B. N. Sadovskii, “Differential equations with uniformly continuous right hand side,” Trudy Nauchno-Issledovatel'nogo Instituta Matematiki Voronezhskogo Gosudarstvennogo Universiteta, vol. 1, pp. 128–136, 1970. View at MathSciNet
  44. S. Szufla, “Measure of non-compactness and ordinary differential equations in Banach spaces,” Bulletin de l'Académie Polonaise des Sciences, vol. 19, pp. 831–835, 1971. View at Zentralblatt MATH · View at MathSciNet
  45. J. Banaś, “On existence theorems for differential equations in Banach spaces,” Bulletin of the Australian Mathematical Society, vol. 32, no. 1, pp. 73–82, 1985. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  46. J. Banaś and M. Lecko, “Solvability of infinite systems of differential equations in Banach sequence spaces,” Journal of Computational and Applied Mathematics, vol. 137, no. 2, pp. 363–375, 2001. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  47. M. Mursaleen and S. A. Mohiuddine, “Applications of measures of noncompactness to the infinite system of differential equations in p spaces,” Nonlinear Analysis. Theory, Methods & Applications A, vol. 75, no. 4, pp. 2111–2115, 2012. View at Publisher · View at Google Scholar · View at MathSciNet
  48. M. Mursaleen and A. Alotaibi, “Infinite systems of differential equations in some BK spaces,” Abstract and Applied Analysis, vol. 2012, Article ID 863483, 20 pages, 2012. View at Publisher · View at Google Scholar