About this Journal Submit a Manuscript Table of Contents
Abstract and Applied Analysis
Volume 2013 (2013), Article ID 840218, 6 pages
http://dx.doi.org/10.1155/2013/840218
Research Article

A New Method of Moments for the Bimodal Particle System in the Stokes Regime

1College of Mechanical and Electrical Engineering, Hohai University, Changzhou 213022, China
2China Jiliang University, Hangzhou 310018, China

Received 22 September 2013; Accepted 30 October 2013

Academic Editor: Jianzhong Lin

Copyright © 2013 Yan-hua Liu and Zhao-qin Yin. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. L. Chan, Z. Ning, J. S. Wang, C. S. Cheung, C. W. Leung, and W. T. Hung, “Gaseous and particle emission factors from the selected on-road petrol/gasoline, diesel, and liquefied petroleum gas vehicles,” Energy and Fuels, vol. 21, no. 5, pp. 2710–2718, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. R. B. Diemer and J. H. Olson, “A moment methodology for coagulation and breakage problems, part 2: moment models and distribution reconstruction,” Chemical Engineering Science, vol. 57, no. 12, pp. 2211–2228, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. J. I. Jeong and M. Choi, “A bimodal moment model for the simulation of particle growth,” Journal of Aerosol Science, vol. 35, no. 9, pp. 1071–1090, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Pugatshova, A. Reinart, and E. Tamm, “Features of the multimodal aerosol size distribution depending on the air mass origin in the Baltic region,” Atmospheric Environment, vol. 41, no. 21, pp. 4408–4422, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. G. Lonati, M. Crippa, V. Gianelle, and R. van Dingenen, “Daily patterns of the multi-modal structure of the particle number size distribution in Milan, Italy,” Atmospheric Environment, vol. 45, no. 14, pp. 2434–2442, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. H. Tang and J. Lin, “Research on bimodal particle extinction coefficient during Brownian coagulation and condensation for the entire particle size regime,” Journal of Nanoparticle Research, vol. 13, no. 12, pp. 7229–7245, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. A. S. Koziol and H. G. Leighton, “The moments method for multi-modal multi-component aerosols as applied to the coagulation-type equation,” Quarterly Journal of the Royal Meteorological Society, vol. 133, no. 625, pp. 1057–1070, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. J. C. Barrett and J. S. Jheeta, “Improving the accuracy of the moments method for solving the aerosol general dynamic equation,” Journal of Aerosol Science, vol. 27, no. 8, pp. 1135–1142, 1996. View at Publisher · View at Google Scholar · View at Scopus
  9. C. H. Jung and Y. P. Kim, “Numerical estimation of the effects of condensation and coagulation on visibility using the moment method,” Journal of Aerosol Science, vol. 37, no. 2, pp. 143–161, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. R. McGraw, “Description of aerosol dynamics by the quadrature method of moments,” Aerosol Science and Technology, vol. 27, no. 2, pp. 255–265, 1997. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Yu, J. Lin, and T. Chan, “A new moment method for solving the coagulation equation for particles in Brownian motion,” Aerosol Science and Technology, vol. 42, no. 9, pp. 705–713, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Yu and J. Lin, “Taylor-expansion moment method for agglomerate coagulation due to Brownian motion in the entire size regime,” Journal of Aerosol Science, vol. 40, no. 6, pp. 549–562, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Yu and J. Lin, “Binary homogeneous nucleation and growth of water-sulfuric acid nanoparticles using a TEMOM model,” International Journal of Heat and Mass Transfer, vol. 53, no. 4, pp. 635–644, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  14. M. Yu, J. Lin, and T. Chan, “Numerical simulation for nucleated vehicle exhaust particulate matters via the temom/les method,” International Journal of Modern Physics C, vol. 20, no. 3, pp. 399–421, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  15. J. Lin, P. Lin, and H. Chen, “Research on the transport and deposition of nanoparticles in a rotating curved pipe,” Physics of Fluids, vol. 21, no. 12, pp. 1–11, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  16. M. Yu, J. Lin, H. Jin, and Y. Jiang, “The verification of the Taylor-expansion moment method for the nanoparticle coagulation in the entire size regime due to Brownian motion,” Journal of Nanoparticle Research, vol. 13, no. 5, pp. 2007–2020, 2011. View at Publisher · View at Google Scholar · View at Scopus