About this Journal Submit a Manuscript Table of Contents
Abstract and Applied Analysis
Volume 2013 (2013), Article ID 846389, 8 pages
http://dx.doi.org/10.1155/2013/846389
Research Article

Nonlinear Model Predictive Control with Terminal Invariant Manifolds for Stabilization of Underactuated Surface Vessel

1College of Information and Telecommunication, Harbin Engineering University, Harbin 150001, China
2College of Automation, Harbin Engineering University, Harbin 150001, China
3School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China

Received 21 September 2013; Accepted 14 October 2013

Academic Editor: Xiaojie Su

Copyright © 2013 Lutao Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Hedjar, “Adaptive neural network model predictive control,” International Journal of Innovative Computing, Information and Control, vol. 9, no. 3, pp. 1245–1257, 2013.
  2. V. Vesely, D. Rosinova, and T. Nguyen Quang, “Networked output feedback robust predictive controller design,” International Journal of Innovative Computing, Information and Control, vol. 9, no. 10, pp. 3941–3953, 2013.
  3. S. Bououden, M. Chadli, F. Allouani, and S. Filali, “A new approach for fuzzy predictive adaptive controller design using particle swarm optimization algorithm,” International Journal of Innovative Computing, Information and Control, vol. 9, no. 9, pp. 3741–3758, 2013.
  4. V. Vesely and J. Osusky, “Robust multivariable generalized predictive control design,” International Journal of Innovative Computing, Information and Control, vol. 9, no. 8, pp. 3377–3390, 2013.
  5. X. Su, P. Shi, L. Wu, and Y. -D. Song, “A novel control design on discrete-time takagi-sugeno fuzzy systems with time-varying delays,” IEEE Transactions on Fuzzy Systems, vol. 20, no. 6, pp. 655–671, 2013. View at Publisher · View at Google Scholar
  6. X. Su, X. Yang, P. Shi, and L. Wu, “Fuzzy control of nonlinear electromagnetic suspension systems,” Mechatronics. View at Publisher · View at Google Scholar
  7. L. Wu, W. X. Zheng, and H. Gao, “Dissipativity-based sliding mode control of switched stochastic systems,” IEEE Transactions on Automatic Control, vol. 58, no. 3, pp. 785–793, 2013. View at Publisher · View at Google Scholar
  8. L. Wu, X. Su, and P. Shi, “Output feedback control of markovian jump repeated scalar nonlinear systems,” IEEE Transactions on Automatic Control. View at Publisher · View at Google Scholar
  9. T. I. Fossen, Marine Control Systems, Marine Cybernetics, Trondheim, Norway, 2002.
  10. K. D. Do and J. Pan, “Robust path-following of underactuated ships: theory and experiments on a model ship,” Ocean Engineering, vol. 33, no. 10, pp. 1354–1372, 2006. View at Publisher · View at Google Scholar
  11. J. Cheng, J. Yi, and D. Zhao, “Stabilization of an underactuated surface vessel via discontinuous control,” in Proceedings of the American Control Conference, pp. 206–211, New York, NY, USA, July 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. K. Y. Pettersen and H. Nijmeijer, “Global practical stabilization and tracking for an underactuated ship—a combined averaging and backsteppihg approach,” Modeling, Identification and Control, vol. 20, no. 4, pp. 189–199, 1999. View at Publisher · View at Google Scholar · View at Scopus
  13. K. Y. Pettersen and H. Nijmeijer, “Tracking control of an underactuated surface vessel,” in Proceedings of the 37th IEEE Conference on Decision and Control, pp. 4561–4566, Tampa, Fla, USA, December 1998. View at Scopus
  14. E. Lefeber, Tracking control of nonlinear mechanical systems [Ph.D. thesis], Department of Mechanical Engineering, Twente University, Twente, The Netherlands, 2000.
  15. E. Lefeber, K. Y. Pettersen, and H. Nijmeijer, “Tracking control of an underactuated ship,” IEEE Transactions on Control Systems Technology, vol. 11, no. 1, pp. 52–61, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. Z. P. Jiang and H. Nijmeijer, “A recursive technique for tracking control of nonholonomic systems in chained form,” IEEE Transactions on Automatic Control, vol. 44, no. 2, pp. 265–279, 1999. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  17. K. Y. Pettersen and H. Nijmeijer, “Underactuated ship tracking control: theory and experiments,” International Journal of Control, vol. 74, no. 14, pp. 1435–1446, 2001. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  18. Z. P. Jiang, “Global tracking control of underactuated ships by Lyapunovs direct method,” Automatica, vol. 38, no. 2, pp. 301–309, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. J. Ghommam, F. Mnif, A. Benali, and N. Derbel, “Asymptotic backstepping stabilization of an underactuated surface vessel,” IEEE Transactions on Control Systems Technology, vol. 14, no. 6, pp. 1150–1157, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. Z. Liu, R. Yu, and Q. Zhu, “Comments on asymptotic backstepping stabilization of an underactuated surface vessel,” IEEE Transactions on Control Systems Technology, vol. 20, no. 1, pp. 286–288, 2012. View at Publisher · View at Google Scholar · View at Scopus
  21. Li Zhen, Path following with roll constraints for marine surface vessels in wave fields [Ph.D. thesis], University of Michigan, Ann Arbor, Mich, USA, 2009.
  22. X. F. Wang, T. S. Li, Z. J. Zou, and W. L. Luo, “Nonlinear model predictive controller design for path following of underactuated ships,” Journal of Ship Mechanics, vol. 14, no. 3, pp. 217–227, 2010. View at Scopus
  23. S. Yin, S. X. Ding, A. Haghani, H. Hao, and P. Zhang, “A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process,” Journal of Process Control, vol. 22, no. 9, pp. 1567–1581, 2012. View at Publisher · View at Google Scholar
  24. S. Yin, S. Ding, and H. Luo, “Real-time implementation of fault tolerant control system with performance optimization,” IEEE Transactions on Industrial Electronics, vol. 61, no. 5, pp. 2402–2411, 2013. View at Publisher · View at Google Scholar
  25. S. Yin, S. Ding, A. Haghani, and H. Hao, “Data-driven monitoring for stochastic systems and its application on batch process,” International Journal of Systems Science, vol. 44, no. 7, pp. 1366–1376, 2013. View at Publisher · View at Google Scholar
  26. S. Yin, X. Yang, and H. Karimi, “Data-driven adaptive observer for fault diagnosis,” Mathematical Problems in Engineering, vol. 2012, Article ID 832836, 21 pages, 2012. View at Zentralblatt MATH
  27. T. I. Fossen, Guidance and Control of Ocean Vehicles, Wiley, New York, NY, USA, 1994.
  28. K. Y. Wichlund, O. J. Sordalen, and O. Egeland, “Control properties of underactuated vehicles,” in Proceedings of the IEEE International Conference on Robotics and Automation, vol. 2, pp. 2009–2014, Nagoya, Japan, May 1995. View at Publisher · View at Google Scholar · View at Scopus
  29. C. I. Byrnes and A. Isidori, “On the attitude stabilization of rigid spacecraft,” Automatica, vol. 27, no. 1, pp. 87–95, 1991. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  30. K. Y. Pettersen and O. Egeland, “Exponential stabilization of an nderactuated surface vessel,” in Proceedings of the 35th IEEE Conference on Decision and Control, pp. 967–972, Kobe, Japan, 1996.
  31. R. W. Brockett, “Asymptotic stability and feedback stabilization,” in Proceedings of Conference Progress in Mathematics, vol. 27, pp. 181–208, Boston, Mass, USA, 1983.
  32. F. Mazenc, K. Y. Pettersen, and H. Nijmeijer, “Global uniform asymptotic stabilization of an underactuated surface vessel,” in Proceedings of the 41st IEEE Conference on Decision and Control (CDC '02), pp. 510–515, Las Vegas, Nev, USA, December 2002. View at Scopus
  33. F. A. C. C. Fontes, “A general framework to design stabilizing nonlinear model predictive controllers,” Systems and Control Letters, vol. 42, no. 2, pp. 127–143, 2001. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus