About this Journal Submit a Manuscript Table of Contents
Abstract and Applied Analysis
Volume 2013 (2013), Article ID 852698, 10 pages
http://dx.doi.org/10.1155/2013/852698
Research Article

Stationary Patterns of a Cross-Diffusion Epidemic Model

1School of Mathematics and Computational Science, Sun Yat-sen University, Guangzhou 510275, China
2College of Mathematics and Information Science, Wenzhou University, Wenzhou 325035, China
3Department of Applied Mathematics, Shanghai Finance University, Shanghai 201209, China
4College of Physics and Electronic Information Engineering, Wenzhou University, Wenzhou 325035, China

Received 16 September 2013; Accepted 3 October 2013

Academic Editor: Carlo Bianca

Copyright © 2013 Yongli Cai et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. O. Kermack and A. G. McKendrick, “Contributions to the mathematical theory of epidemics-I,” Bulletin of Mathematical Biology, vol. 53, no. 1-2, pp. 33–55, 1991. View at Publisher · View at Google Scholar · View at Scopus
  2. Z. Ma, Y. Zhou, and J. Wu, Modeling and Dynamics of Infectious Diseases, Higher Education Press, 2009.
  3. E. E. Holmes, M. A. Lewis, J. E. Banks, and R. R. Veit, “Partial differential equations in ecology: spatial interactions and population dynamics,” Ecology, vol. 75, no. 1, pp. 17–29, 1994. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Okubo and S. A. Levin, Diffusion and Ecological Problems: Modern Perspectives, vol. 14 of Interdisciplinary Applied Mathematics, Springer, New York, NY, USA, 2nd edition, 2001. View at MathSciNet
  5. C. Neuhauser, “Mathematical challenges in spatial ecology,” Notices of the American Mathematical Society, vol. 48, no. 11, pp. 1304–1314, 2001. View at Zentralblatt MATH · View at MathSciNet
  6. B. T. Grenfell, O. N. Bjørnstad, and J. Kappey, “Travelling waves and spatial hierarchies in measles epidemics,” Nature, vol. 414, no. 6865, pp. 716–723, 2001. View at Publisher · View at Google Scholar · View at Scopus
  7. J. D. Murray, Mathematical Biology. II, vol. 18 of Interdisciplinary Applied Mathematics, Springer, New York, NY, USA, 3rd edition, 2003. View at MathSciNet
  8. L. Rass and J. Radcliffe, Spatial Deterministic Epidemics, vol. 102 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, USA, 2003. View at MathSciNet
  9. R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-Diffusion Equations, Wiley Series in Mathematical and Computational Biology, John Wiley & Sons, Chichester, UK, 2003. View at Publisher · View at Google Scholar · View at MathSciNet
  10. A. L. Lloyd and V. A. A. Jansen, “Spatiotemporal dynamics of epidemics: synchrony in metapopulation models,” Mathematical Biosciences, vol. 188, pp. 1–16, 2004. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  11. W. M. Van Ballegooijen and M. C. Boerlijst, “Emergent trade-offs and selection for outbreak frequency in spatial epidemics,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 52, pp. 18246–18250, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. G. Mulone, B. Straughan, and W. Wang, “Stability of epidemic models with evolution,” Studies in Applied Mathematics, vol. 118, no. 2, pp. 117–132, 2007. View at Publisher · View at Google Scholar · View at MathSciNet
  13. H. Malchow, S. V. Petrovskii, and E. Venturino, Spatiotemporal Patterns in Ecology Andepidemiology-Theory, Models, and Simulation, Mathematical and Computational Biology Series, Chapman & Hall/CRC, Boca Raton, Fla, USA, 2008.
  14. R. K. Upadhyay, N. Kumari, and V. S. H. Rao, “Modeling the spread of bird flu and predicting outbreak diversity,” Nonlinear Analysis: Real World Applications, vol. 9, no. 4, pp. 1638–1648, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  15. K. Wang, W. Wang, and S. Song, “Dynamics of an HBV model with diffusion and delay,” Journal of Theoretical Biology, vol. 253, no. 1, pp. 36–44, 2008. View at Publisher · View at Google Scholar · View at MathSciNet
  16. G.-Q. Sun, Z. Jin, Q.-X. Liu, and L. Li, “Spatial pattern in an epidemic system with cross-diffusion of the susceptible,” Journal of Biological Systems, vol. 17, no. 1, pp. 141–152, 2009. View at Publisher · View at Google Scholar · View at MathSciNet
  17. M. Bendahmane and M. Saad, “Mathematical analysis and pattern formation for a partial immune system modeling the spread of an epidemic disease,” Acta Applicandae Mathematicae, vol. 115, no. 1, pp. 17–42, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  18. Y. Cai and W. Wang, “Spatiotemporal dynamics of a reaction-diffusion epidemic model with nonlinear incidence rate,” Journal of Statistical Mechanics: Theory and Experiment, vol. 2011, no. 2, Article ID P02025, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. W. Wang, Y. Lin, H. Wang, H. Liu, and Y. Tan, “Pattern selection in an epidemic model with self and cross diffusion,” Journal of Biological Systems, vol. 19, no. 1, pp. 19–31, 2011. View at Publisher · View at Google Scholar · View at MathSciNet
  20. W. Wang, Y. Cai, M. Wu, K. Wang, and Z. Li, “Complex dynamics of a reaction-diffusion epidemic model,” Nonlinear Analysis: Real World Applications, vol. 13, no. 5, pp. 2240–2258, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  21. Y. Cai, W. Liu, Y. Wang, and W. Wang, “Complex dynamics of a diffusive epidemic model with strong Allee effect,” Nonlinear Analysis: Real World Applications, vol. 14, no. 4, pp. 1907–1920, 2013. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  22. Y. Lou and W.-M. Ni, “Diffusion, self-diffusion and cross-diffusion,” Journal of Differential Equations, vol. 131, no. 1, pp. 79–131, 1996. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  23. E. H. Kerner, “Further considerations on the statistical mechanics of biological associations,” The Bulletin of Mathematical Biophysics, vol. 21, no. 2, pp. 217–255, 1959. View at MathSciNet
  24. N. Shigesada, K. Kawasaki, and E. Teramoto, “Spatial segregation of interacting species,” Journal of Theoretical Biology, vol. 79, no. 1, pp. 83–99, 1979. View at Publisher · View at Google Scholar · View at MathSciNet
  25. M. Wang, “Non-constant positive steady states of the Sel'kov model,” Journal of Differential Equations, vol. 190, no. 2, pp. 600–620, 2003. View at Publisher · View at Google Scholar · View at MathSciNet
  26. P. Y. H. Pang and M. Wang, “Strategy and stationary pattern in a three-species predator-prey model,” Journal of Differential Equations, vol. 200, no. 2, pp. 245–273, 2004. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  27. M. Wang, “Stationary patterns of strongly coupled prey-predator models,” Journal of Mathematical Analysis and Applications, vol. 292, no. 2, pp. 484–505, 2004. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  28. M. Wang, “Stationary patterns caused by cross-diffusion for a three-species prey-predator model,” Computers & Mathematics with Applications, vol. 52, no. 5, pp. 707–720, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  29. R. Peng, J. Shi, and M. Wang, “Stationary pattern of a ratio-dependent food chain model with diffusion,” SIAM Journal on Applied Mathematics, vol. 67, no. 5, pp. 1479–1503, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  30. R. Peng, J. Shi, and M. Wang, “On stationary patterns of a reaction-diffusion model with autocatalysis and saturation law,” Nonlinearity, vol. 21, no. 7, pp. 1471–1488, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  31. R. Peng and J. Shi, “Non-existence of non-constant positive steady states of two Holling type-II predator-prey systems: strong interaction case,” Journal of Differential Equations, vol. 247, no. 3, pp. 866–886, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  32. F. Yi, J. Wei, and J. Shi, “Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system,” Journal of Differential Equations, vol. 246, no. 5, pp. 1944–1977, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  33. B. Li and M. Wang, “Stationary patterns of the stage-structured predator-prey model with diffusion and cross-diffusion,” Mathematical and Computer Modelling, vol. 54, no. 5-6, pp. 1380–1393, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  34. S. A. Levin and L. A. Segel, “Pattern generation in space and aspect,” SIAM Review, vol. 27, no. 1, pp. 45–67, 1985. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  35. M. Barthélemy, A. Barrat, R. Pastor-Satorras, and A. Vespignani, “Dynamical patterns of epidemic outbreaks in complex heterogeneous networks,” Journal of Theoretical Biology, vol. 235, no. 2, pp. 275–288, 2005. View at Publisher · View at Google Scholar · View at MathSciNet
  36. V. Colizza and A. Vespignani, “Epidemic modeling in metapopulation systems with heterogeneous coupling pattern: theory and simulations,” Journal of Theoretical Biology, vol. 251, no. 3, pp. 450–467, 2008. View at Publisher · View at Google Scholar · View at MathSciNet
  37. O. G. Jepps, C. Bianca, and L. Rondoni, “Onset of diffusive behavior in confined transport systems,” Chaos, vol. 18, no. 1, Article ID 013127, 2008. View at Publisher · View at Google Scholar · View at MathSciNet
  38. J. R. Cannon and D. J. Galiffa, “An epidemiology model suggested by yellow fever,” Mathematical Methods in the Applied Sciences, vol. 35, no. 2, pp. 196–206, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  39. K. P. Das and J. Chattopadhyay, “Role of environmental disturbance in an eco-epidemiological model with disease from external source,” Mathematical Methods in the Applied Sciences, vol. 35, no. 6, pp. 659–675, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  40. C. Bianca, “Existence of stationary solutions in kinetic models with gaussian thermostats,” Mathematical Methods in the Applied Sciences, vol. 36, no. 13, pp. 1768–1775, 2013. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  41. K. I. Kim, Z. Lin, and Q. Zhang, “An SIR epidemic model with free boundary,” Nonlinear Analysis: Real World Applications, vol. 14, no. 5, pp. 1992–2001, 2013. View at Publisher · View at Google Scholar · View at MathSciNet
  42. Z. Liu, “Dynamics of positive solutions to SIR and SEIR epidemic models with saturated incidence rates,” Nonlinear Analysis: Real World Applications, vol. 14, no. 3, pp. 1286–1299, 2013. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  43. M. Qiao, A. Liu, and U. Foryś, “Qualitative analysis of the SICR epidemic model with impulsive vaccinations,” Mathematical Methods in the Applied Sciences, vol. 36, no. 6, pp. 695–706, 2013. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  44. L. Wang, Z. Teng, and H. Jiang, “Global attractivity of a discrete SIRS epidemic model with standard incidence rate,” Mathematical Methods in the Applied Sciences, vol. 36, no. 5, pp. 601–619, 2013. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  45. S. Wang, W. Liu, Z. Guo, and W. Wang, “Traveling wave solutions in a reaction-diffusion epidemic model,” Abstract and Applied Analysis, vol. 2013, Article ID 216913, 13 pages, 2013. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  46. A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, vol. 44 of Applied Mathematical Sciences, Springer, New York, NY, USA, 1983. View at Publisher · View at Google Scholar · View at MathSciNet
  47. M. Kirane, “Global bounds and asymptotics for a system of reaction-diffusion equations,” Journal of Mathematical Analysis and Applications, vol. 138, no. 2, pp. 328–342, 1989. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  48. D. Henry, Geometric Theory of Semilinear Parabolic Equations, vol. 840 of Lecture Notes in Mathematics, Springer, Berlin, Germany, 1981. View at MathSciNet
  49. L. Melkemi, A. Z. Mokrane, and A. Youkana, “On the uniform boundedness of the solutions of systems of reaction-diffusion equations,” Electronic Journal of Qualitative Theory of Differential Equations, no. 24, pp. 1–10, 2005. View at Zentralblatt MATH · View at MathSciNet
  50. E. H. Daddiouaissa, “Existence of global solutions for a system of reaction-diffusion equations having a triangular matrix,” Electronic Journal of Differential Equations, vol. 2008, no. 141, pp. 1–9, 2008. View at Zentralblatt MATH · View at MathSciNet
  51. L. Nirenberg, Topics in Nonlinear Functional Analysis, vol. 6, AMS Bookstore, 2001.
  52. C.-S. Lin, W.-M. Ni, and I. Takagi, “Large amplitude stationary solutions to a chemotaxis system,” Journal of Differential Equations, vol. 72, no. 1, pp. 1–27, 1988. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  53. D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, vol. 224, Springer, Berlin, Germany, 2nd edition, 1983. View at MathSciNet
  54. A. M. Turing, “The chemical basis of morphogenesis,” Philosophical Transactions of The Royal Society of London B, vol. 237, no. 641, pp. 37–72, 1952. View at Publisher · View at Google Scholar