About this Journal Submit a Manuscript Table of Contents
Abstract and Applied Analysis
Volume 2013 (2013), Article ID 858597, 13 pages
http://dx.doi.org/10.1155/2013/858597
Research Article

The Effect of Boundary Slip on the Transient Pulsatile Flow of a Modified Second-Grade Fluid

1Department of Mathematics and Statistics, Curtin University, Perth, WA 6845, Australia
2Department of Mathematics, Mahidol University, Faculty of Science, Bangkok 10400, Thailand

Received 20 May 2013; Accepted 9 August 2013

Academic Editor: Rasajit Bera

Copyright © 2013 N. Khajohnsaksumeth et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

We investigate the effect of boundary slip on the transient pulsatile fluid flow through a vessel with body acceleration. The Fahraeus-Lindqvist effect, expressing the fluid behavior near the wall by the Newtonian fluid while in the core by a non-Newtonian fluid, is also taken into account. To describe the non-Newtonian behavior, we use the modified second-grade fluid model in which the viscosity and the normal stresses are represented in terms of the shear rate. The complete set of equations are then established and formulated in a dimensionless form. For a special case of the material parameter, we derive an analytical solution for the problem, while for the general case, we solve the problem numerically. Our subsequent analytical and numerical results show that the slip parameter has a very significant influence on the velocity profile and also on the convergence rate of the numerical solutions.