About this Journal Submit a Manuscript Table of Contents
Abstract and Applied Analysis
Volume 2013 (2013), Article ID 909721, 10 pages
http://dx.doi.org/10.1155/2013/909721
Research Article

Implementation on Electronic Circuits and RTR Pragmatical Adaptive Synchronization: Time-Reversed Uncertain Dynamical Systems' Analysis and Applications

1Department of Biological Science and Technology, National Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu 300, Taiwan
2Brain Research Center, National Chiao Tung University, Hsinchu, Taiwan
3Graduate Institute of Automation and Control, National Taiwan University of Science and Technology, Taipei, Taiwan
4Institute of Electrical Control Engineering, National Chiao Tung University, Hsinchu, Taiwan
5Department of Mechanical Engineering, National Chiao Tung University, Hsinchu, Taiwan

Received 18 October 2012; Accepted 27 January 2013

Academic Editor: Gani Stamov

Copyright © 2013 Shih-Yu Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. S. H. Chowdhury, I. Hashim, S. Momani, and M. M. Rahman, “Application of multistage homotopy perturbation method to the chaotic genesio system,” Abstract and Applied Analysis, vol. 2012, Article ID 974293, 10 pages, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  2. H. Luo, “Global attractor of atmospheric circulation equations with humidity effect,” Abstract and Applied Analysis, vol. 2012, Article ID 172956, 15 pages, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  3. S. Y. Li and Z. M. Ge, “Generating tri-chaos attractors with three positive Lyapunov exponents in new four order system via linear coupling,” Nonlinear Dynamics, vol. 69, no. 3, pp. 805–816, 2012. View at Publisher · View at Google Scholar
  4. C. H. Yang, T. W. Chen, S. Y. Li, C. M. Chang, and Z. M. Ge, “Chaos generalized synchronization of an inertial tachometer with new Mathieu-Van der Pol systems as functional system by GYC partial region stability theory,” Communications in Nonlinear Science and Numerical Simulation, vol. 17, no. 3, pp. 1355–1371, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  5. S. Y. Li, C. H. Yang, S. A. Chen, L. W. Ko, and C. T. Lin, “Fuzzy adaptive synchronization of time-reversed chaotic systems via a new adaptive control strategy,” Information Sciences, vol. 222, no. 10, pp. 486–500, 2013. View at Publisher · View at Google Scholar
  6. R. Wu and X. Li, “Hopf bifurcation analysis and anticontrol of Hopf circles of the Rössler-like system,” Abstract and Applied Analysis, vol. 2012, Article ID 341870, p. 16, 2012. View at Publisher · View at Google Scholar
  7. A. Freihat and S. Momani, “Adaptation of differential transform method for the numeric-analytic solution of fractional-order Rössler chaotic and hyperchaotic systems,” Abstract and Applied Analysis, vol. 2012, Article ID 934219, 13 pages, 2012. View at Publisher · View at Google Scholar
  8. Z. M. Ge and S. Y. Li, “Chaos generalized synchronization of new Mathieu-Van der Pol systems with new Duffing-Van der Pol systems as functional system by GYC partial region stability theory,” Applied Mathematical Modelling, vol. 35, no. 11, pp. 5245–5264, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  9. Z. M. Ge and S. Y. Li, “Chaos control of new Mathieu-Van der Pol systems with new Mathieu-Duffing systems as functional system by GYC partial region stability theory,” Nonlinear Analysis, Theory, Methods and Applications, vol. 71, no. 9, pp. 4047–4059, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  10. C. Yin, S. M. Zhong, and W. F. Chen, “Design of sliding mode controller for a class of fractional-order chaotic systems,” Communications in Nonlinear Science and Numerical Simulation, vol. 17, no. 1, pp. 356–366, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  11. J. Zhao, “Adaptive Q-S synchronization between coupled chaotic systems with stochastic perturbation and delay,” Applied Mathematical Modelling, vol. 36, no. 7, pp. 3312–3319, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  12. M. Villegas, F. Augustin, A. Gilg, A. Hmaidi, and U. Wever, “Application of the polynomial chaos expansion to the simulation of chemical reactors with uncertainties,” Mathematics and Computers in Simulation, vol. 82, no. 5, pp. 805–817, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  13. M. F. Pérez-Polo and M. Pérez-Molina, “Saddle-focus bifurcation and chaotic behavior of a continuous stirred tank reactor using PI control,” Chemical Engineering Science, vol. 74, no. 28, pp. 79–92, 2012. View at Publisher · View at Google Scholar
  14. H. Baek, “The dynamics of a predator-prey system with state-dependent feedback control,” Abstract and Applied Analysis, vol. 2012, Article ID 101386, 17 pages, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  15. B. I. Camara and H. Mokrani, “Analysis of wave solutions of an adhenovirus-tumor cell system,” Abstract and Applied Analysis, vol. 2012, Article ID 590326, 13 pages, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  16. X. Yuan and H. B. Hwarng, “Managing a service system with social interactions: stability and chaos,” Computers & Industrial Engineering, vol. 63, no. 4, pp. 1178–1188, 2012. View at Publisher · View at Google Scholar
  17. T. Wang, N. Jia, and K. Wang, “A novel GCM chaotic neural network for information processing,” Communications in Nonlinear Science and Numerical Simulation, vol. 17, no. 12, pp. 4846–4855, 2012. View at Publisher · View at Google Scholar
  18. J. Machicao, A. G. Marco, and O. M. Bruno, “Chaotic encryption method based on life-like cellular automata,” Expert Systems with Applications, vol. 39, no. 16, pp. 12626–12635, 2012. View at Publisher · View at Google Scholar
  19. M. M. Juan, L. M. G. Rafael, A. L. Ricardo, and A. I. Carlos, “A chaotic system in synchronization and secure communications,” Communications in Nonlinear Science and Numerical Simulation, vol. 17, no. 4, pp. 1706–1713, 2012. View at Publisher · View at Google Scholar
  20. Y. Y. Hou, H. C. Chen, J. F. Chang, J. J. Yan, and T. L. Liao, “Design and implementation of the Sprott chaotic secure digital communication systems,” Applied Mathematics and Computation, vol. 218, no. 24, pp. 11799–11791, 1805.
  21. C.-J. Cheng, “Robust synchronization of uncertain unified chaotic systems subject to noise and its application to secure communication,” Applied Mathematics and Computation, vol. 219, no. 5, pp. 2698–2712, 2012. View at Publisher · View at Google Scholar
  22. E. N. Lorenz, “Deterministic non-periodic flows,” Journal of the Atmospheric Science, vol. 20, no. 2, pp. 130–141, 1963. View at Publisher · View at Google Scholar
  23. S. Li, Y. M. Li, B. Liu, and T. Murray, “Model-free control of Lorenz chaos using an approximate optimal control strategy,” Communications in Nonlinear Science and Numerical Simulation, vol. 17, no. 12, pp. 4891–4900, 2012. View at Publisher · View at Google Scholar
  24. D. Cafagna and G. Grassi, “On the simplest fractional-order memristor-based chaotic system,” Nonlinear Dynamics, vol. 70, no. 2, pp. 1185–1197, 2012. View at Publisher · View at Google Scholar
  25. Q. Bi and Z. Zhang, “Bursting phenomena as well as the bifurcation mechanism in controlled Lorenz oscillator with two time scales,” Physics Letters A, vol. 375, no. 8, pp. 1183–1190, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  26. F. Özkaynak and A. B. Özer, “A method for designing strong S-Boxes based on chaotic Lorenz system,” Physics Letters A, vol. 374, no. 36, pp. 3733–3738, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  27. A. Vaněček and S. Čelikovský, Control Systems: From Linear Analysis to Synthesis of Chaos, Prentice-Hall, London, UK, 1996.
  28. A. El-Gohary and F. Bukhari, “Optimal control of Lorenz system during different time intervals,” Applied Mathematics and Computation, vol. 144, no. 2-3, pp. 337–351, 2003. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  29. Z. M. Ge and C. C. Chen, “Phase synchronization of coupled chaotic multiple time scales systems,” Chaos, Solitons & Fractals, vol. 20, no. 3, pp. 639–647, 2004. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  30. Z. M. Ge and S. Y. Li, “Yang and Yin parameters in the Lorenz system,” Nonlinear Dynamics, vol. 62, no. 1-2, pp. 105–117, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  31. Y. Liu and L. C. Barbosa, “Periodic locking in coupled Lorenz systems,” Physics Letters A, vol. 197, no. 1, pp. 13–18, 1995. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  32. L. M. Pecora and T. L. Carroll, “Synchronization in chaotic systems,” Physical Review Letters, vol. 64, no. 8, pp. 821–824, 1990. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  33. K. Salahshoor, M. H. Hajisalehi, and M. H. Sefat, “Nonlinear model identification and adaptive control of CO2 sequestration process in saline aquifers using artificial neural networks,” Applied Soft Computing, vol. 12, no. 11, pp. 3379–3389, 2012. View at Publisher · View at Google Scholar
  34. B. Bhushan and M. Singh, “Adaptive control of DC motor using bacterial foraging algorithm,” Applied Soft Computing, vol. 11, no. 8, pp. 4913–4920, 2011. View at Publisher · View at Google Scholar
  35. R. Ketata, Y. Rezgui, and N. Derbel, “Stability and robustness of fuzzy adaptive control of nonlinear systems,” Applied Soft Computing Journal, vol. 11, no. 1, pp. 166–178, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. O. Cerman and P. Husek, “Adaptive fuzzy sliding mode control for electro-hydraulic servo mechanism,” Expert Systems with Applications, vol. 39, no. 11, pp. 10269–10277, 2012. View at Publisher · View at Google Scholar
  37. H. Khayyam, S. Nahavandi, and S. Davis, “Adaptive cruise control look-ahead system for energy management of vehicles,” Expert Systems with Applications, vol. 39, no. 3, pp. 3874–3885, 2012. View at Publisher · View at Google Scholar
  38. Z. M. Ge, J. K. Yu, and Y. T. Chen, “Pragmatical asymptotical stability theorem with application to satellite system,” Japanese Journal of Applied Physics,, vol. 38, no. 10, pp. 6178–6179, 1999. View at Publisher · View at Google Scholar · View at Scopus
  39. Z. M. Ge and J. K. Yu, “Pragmatical asymptotical stability theorems on partial region and for partial variables with applications to gyroscopic systems,” Journal of Mechanics, vol. 16, no. 4, pp. 179–187, 2000. View at Publisher · View at Google Scholar · View at Scopus
  40. Y. Matsushima, Differentiable Manifolds, Marcel Dekker, 1972.