About this Journal Submit a Manuscript Table of Contents
Abstract and Applied Analysis
Volume 2013 (2013), Article ID 931285, 8 pages
http://dx.doi.org/10.1155/2013/931285
Research Article

Applications of Fuzzy Sliding Mode Control for a Gyroscope System

1Department of Electrical Engineering, Southern Taiwan University of Science and Technology, Tainan 71005, Taiwan
2Department of Maritime Information and Technology, National Kaohsiung Marine University, Kaohsiung 80543, Taiwan
3Department of Electrical Engineering, Kao Yuan University, Kaohsiung 82151, Taiwan

Received 13 June 2013; Accepted 29 July 2013

Academic Editor: Chang-Hua Lien

Copyright © 2013 Shih-Chung Chen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C.-C. Wang and H.-T. Yau, “Nonlinear dynamic analysis and sliding mode control for a gyroscope system,” Nonlinear Dynamics, vol. 66, no. 1-2, pp. 53–65, 2011. View at Publisher · View at Google Scholar · View at MathSciNet
  2. Z.-M. Ge and J.-K. Lee, “Chaos synchronization and parameter identification for gyroscope system,” Applied Mathematics and Computation, vol. 163, no. 2, pp. 667–682, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  3. S. Boccaletti, A. Farini, and F. T. Arecchi, “Adaptive synchronization of chaos for secure communication,” Physical Review E, vol. 55, no. 5 A, pp. 4979–4981, 1997. View at Scopus
  4. J. Fei, H. Ding, and Y. Yang, “Adaptive sliding mode control of MEMS triaxial gyroscope based on RBF network,” in Proceedings of the IEEE International Conference on Mechatronics and Automation (ICMA '11), pp. 331–336, August 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. H.-K. Chen, “Chaos and chaos synchronization of a symmetric gyro with linear-plus-cubic damping,” Journal of Sound and Vibration, vol. 255, no. 4, pp. 719–740, 2002. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  6. C.-K. Chen, J.-J. Yan, and T.-L. Liao, “Sliding mode control for synchronization of Rössler systems with time delays and its application to secure communication,” Physica Scripta, vol. 76, no. 5, pp. 436–441, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. H. T. Yau, T. H. Hung, and C. C. Hsieh, “Bluetooth based chaos synchronization using particle swarm optimization and its applications to image encryption,” Sensors, vol. 12, pp. 7468–7484, 2012.
  8. C.-L. Kuo, “Design of a fuzzy sliding-mode synchronization controller for two different chaos systems,” Computers & Mathematics with Applications, vol. 61, no. 8, pp. 2090–2095, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  9. M. P. Aghababa, S. Khanmohammadi, and G. Alizadeh, “Finite-time synchronization of two different chaotic systems with unknown parameters via sliding mode technique,” Applied Mathematical Modelling, vol. 35, no. 6, pp. 3080–3091, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  10. J. Li and K. D. Kumar, “Decentralized fault-tolerant control for satellite attitude synchronization,” IEEE Transactions on Fuzzy Systems, vol. 20, no. 3, pp. 572–586, 2012.
  11. H.-T. Yau, “Chaos synchronization of two uncertain chaotic nonlinear gyros using fuzzy sliding mode control,” Mechanical Systems and Signal Processing, vol. 22, no. 2, pp. 408–418, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. D. I. R. Almeida, J. Alvarez, and J. G. Barajas, “Robust synchronization of Sprott circuits using sliding mode control,” Chaos, Solitons and Fractals, vol. 30, no. 1, pp. 11–18, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. C.-L. Kuo, C.-C. Wang, and N.-S. Pai, “Design of variable structure synchronization controller for two different hyperchaotic systems containing nonlinear inputs,” Journal of Applied Sciences, vol. 9, no. 14, pp. 2635–2639, 2009. View at Publisher · View at Google Scholar · View at Scopus