About this Journal Submit a Manuscript Table of Contents
Abstract and Applied Analysis
Volume 2013 (2013), Article ID 931643, 3 pages
http://dx.doi.org/10.1155/2013/931643
Letter to the Editor

A Note on the Semi-Inverse Method and a Variational Principle for the Generalized KdV-mKdV Equation

1Department of Mathematics, Kunming University, 2 Puxin Road, Kunming, Yunnan 650214, China
2Institute of Nonlinear Analysis, Kunming University, 2 Puxin Road, Kunming, Yunnan 650214, China

Received 1 January 2013; Revised 5 January 2013; Accepted 27 January 2013

Copyright © 2013 Li Yao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J.-H. He, “Asymptotic methods for solitary solutions and compactons,” Abstract and Applied Analysis, vol. 2012, Article ID 916793, 130 pages, 2012. View at Publisher · View at Google Scholar
  2. J.-H. He, “An elementary introduction to recently developed asymptotic methods and nanomechanics in textile engineering,” International Journal of Modern Physics B, vol. 22, pp. 3487–3578, 2008.
  3. J.-H. He, “Some asymptotic methods for strongly nonlinear equations,” International Journal of Modern Physics B, vol. 20, no. 10, pp. 1141–1199, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  4. J.-H. He, “Variational principles for some nonlinear partial differential equations with variable coefficients,” Chaos, Solitons & Fractals, vol. 19, no. 4, pp. 847–851, 2004. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  5. L. Yao, “How to discover a variational principle for a damped vibration problem,” International Journal of Nonlinear Sciences and Numerical Simulation, vol. 11, pp. 171–173, 2010.
  6. G.-C. Wu, “Laplace transform overcoming principle drawbacks in application of the variational iteration method to fractional heat equations,” Thermal Science, vol. 16, no. 4, pp. 1257–1261, 2012.
  7. X.-W. Zhou and L. Wang, “A variational principle for coupled nonlinear Schrödinger equations with variable coefficients and high nonlinearity,” Computers & Mathematics with Applications, vol. 61, no. 8, pp. 2035–2038, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  8. Z.-L. Tao, “Variational approach to the Benjamin Ono equation,” Nonlinear Analysis. Real World Applications, vol. 10, no. 3, pp. 1939–1941, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  9. Z.-L. Tao, “Solitary solutions of the Boiti-Leon-Manna-Pempinelli equation using He's variational method,” Zeitschrift fur Natuforschung A, vol. 63, no. 10-11, pp. 634–636, 2008.
  10. L. Xu, “Variational approach to solitons of nonlinear dispersive K(m, n) equations,” Chaos, Solitons and Fractals, vol. 37, no. 1, pp. 137–143, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  11. D. Baleanu and S. I. Muslih, “Lagrangian formulation of classical fields within Riemann-Liouville fractional derivatives,” Physica Scripta, vol. 72, no. 2-3, pp. 119–121, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  12. D. Baleanu, K. Diethelm, E. Scalas, and J. J. Trujillo, Fractional Calculus Models and Numerical Methods, vol. 3, World Scientific, 2012. View at Publisher · View at Google Scholar · View at MathSciNet
  13. G.-C. Wu and D. Baleanu, “Variational iteration method for the Burgers’ flow with fractional derivatives—new Lagrange Mutipliers,” Applied Mathematical Modelling, vol. 37, no. 9, pp. 6183–6190, 2013. View at Publisher · View at Google Scholar
  14. G.-C. Wu, “New trends in variational iteration method,” Communications in Fractional Calculus, vol. 2, no. 2, pp. 59–75, 2011.