About this Journal Submit a Manuscript Table of Contents
Abstract and Applied Analysis
Volume 2013 (2013), Article ID 934060, 8 pages
http://dx.doi.org/10.1155/2013/934060
Research Article

Homotopy Perturbation Method for Fractional Gas Dynamics Equation Using Sumudu Transform

1Department of Mathematics, Jagannath University, Rampura, Chaksu, Jaipur, Rajasthan 303901, India
2Department of Mathematics, Jagannath Gupta Institute of Engineering & Technology, Jaipur, Rajasthan 302022, India
3Department of Mathematics and Institute for Mathematical Research, University Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia

Received 12 September 2012; Revised 19 November 2012; Accepted 6 December 2012

Academic Editor: Lan Xu

Copyright © 2013 Jagdev Singh et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Beyer and S. Kempfle, “Definition of physically consistent damping laws with fractional derivatives,” Zeitschrift für Angewandte Mathematik und Mechanik, vol. 75, no. 8, pp. 623–635, 1995. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  2. J. H. He, “Some applications of nonlinear fractional differential equations and their approximations,” Bulletin of Science, Technology & Society, vol. 15, no. 2, pp. 86–90, 1999.
  3. J.-H. He, “Approximate analytical solution for seepage flow with fractional derivatives in porous media,” Computer Methods in Applied Mechanics and Engineering, vol. 167, no. 1-2, pp. 57–68, 1998. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  4. R. Hilfer, “Fractional time evolution,” in Applications of Fractional Calculus in Physics, pp. 87–130, World Scientific, River Edge, NJ, USA, 2000. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  5. I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and some of Their Applications, vol. 198 of Mathematics in Science and Engineering, Academic Press, San Diego, Calif, USA, 1999. View at MathSciNet
  6. F. Mainardi, Y. Luchko, and G. Pagnini, “The fundamental solution of the space-time fractional diffusion equation,” Fractional Calculus & Applied Analysis, vol. 4, no. 2, pp. 153–192, 2001. View at Zentralblatt MATH · View at MathSciNet
  7. S. Z. Rida, A. M. A. El-Sayed, and A. A. M. Arafa, “On the solutions of time-fractional reaction-diffusion equations,” Communications in Nonlinear Science and Numerical Simulation, vol. 15, no. 12, pp. 3847–3854, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  8. A. Yıldırım, “He's homotopy perturbation method for solving the space- and time-fractional telegraph equations,” International Journal of Computer Mathematics, vol. 87, no. 13, pp. 2998–3006, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  9. L. Debnath, “Fractional integral and fractional differential equations in fluid mechanics,” Fractional Calculus & Applied Analysis, vol. 6, no. 2, pp. 119–155, 2003. View at Zentralblatt MATH · View at MathSciNet
  10. M. Caputo, Elasticita E Dissipazione, Zani-Chelli, Bologna, Italy, 1969.
  11. K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley & Sons, New York, NY, USA, 1993. View at MathSciNet
  12. K. B. Oldham and J. Spanier, The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order, With an Annotated Chronological Bibliography by Bertram Ross, Mathematics in Science and Engineering, vol. 111, Academic Press, New York, NY, USA, 1974. View at MathSciNet
  13. A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, vol. 204 of North-Holland Mathematics Studies, Elsevier Science B.V., Amsterdam, The Netherlands, 2006. View at MathSciNet
  14. X. J. Yang, Advanced Local Fractional Calculus and Its Applications, World Science Publisher, New York, NY, USA, 2012.
  15. X. J. Yang, “Local fractional integral transforms,” Progress in Nonlinear Science, vol. 4, pp. 1–225, 2011.
  16. X. J. Yang, Local Fractional Functional Analysis and Its Applications, Asian Academic, Hong Kong, China, 2011.
  17. X. J. Yang, “Heat transfer in discontinuous media,” Advances in Mechanical Engineering and Its Applications, vol. 1, no. 3, pp. 47–53, 2012.
  18. X. J. Yang, “Local fractional partial differential equations with fractal boundary problems,” Advances in Computational Mathematics and Its Applications, vol. 1, no. 1, pp. 60–63, 2012.
  19. D. Q. Zeng and Y. M. Qin, “The Laplace-Adomian-Pade technique for the seepage flows with the Riemann-Liouville derivatives,” Communications in Fractional Calculus, vol. 3, no. 1, pp. 26–29, 2012.
  20. J. H. He, “Asymptotic methods for solitary solutions and compactons,” Abstract and Applied Analysis, vol. 2012, Article ID 916793, 130 pages, 2012. View at Publisher · View at Google Scholar
  21. J.-H. He, “Homotopy perturbation technique,” Computer Methods in Applied Mechanics and Engineering, vol. 178, no. 3-4, pp. 257–262, 1999. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  22. J.-H. He, “Homotopy perturbation method: a new nonlinear analytical technique,” Applied Mathematics and Computation, vol. 135, no. 1, pp. 73–79, 2003. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  23. J.-H. He, “New interpretation of homotopy perturbation method. Addendum: ‘some asymptotic methods for strongly nonlinear equations’,” International Journal of Modern Physics B, vol. 20, no. 18, pp. 2561–2568, 2006. View at Publisher · View at Google Scholar · View at MathSciNet
  24. D. D. Ganji, “The application of He's homotopy perturbation method to nonlinear equations arising in heat transfer,” Physics Letters A, vol. 355, no. 4-5, pp. 337–341, 2006. View at Publisher · View at Google Scholar · View at MathSciNet
  25. A. Yildirim, “An algorithm for solving the fractional nonlinear Schrödinger equation by means of the homotopy perturbation method,” International Journal of Nonlinear Sciences and Numerical Simulation, vol. 10, no. 4, pp. 445–450, 2009. View at Scopus
  26. D. D. Ganji and M. Rafei, “Solitary wave solutions for a generalized Hirota-Satsuma coupled KdV equation by homotopy perturbation method,” Physics Letters A, vol. 356, no. 2, pp. 131–137, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  27. M. M. Rashidi, D. D. Ganji, and S. Dinarvand, “Explicit analytical solutions of the generalized Burger and Burger-Fisher equations by homotopy perturbation method,” Numerical Methods for Partial Differential Equations, vol. 25, no. 2, pp. 409–417, 2009. View at Publisher · View at Google Scholar · View at MathSciNet
  28. H. Aminikhah and M. Hemmatnezhad, “An efficient method for quadratic Riccati differential equation,” Communications in Nonlinear Science and Numerical Simulation, vol. 15, no. 4, pp. 835–839, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  29. S. H. Kachapi and D. D. Ganji, Nonlinear Equations: Analytical Methods and Applications, Springer, 2012.
  30. H. Jafari, A. M. Wazwaz, and C. M. Khalique, “Homotopy perturbation and variational iteration methods for solving fuzzy differential equations,” Communications in Fractional Calculus, vol. 3, no. 1, pp. 38–48, 2012.
  31. Y. M. Qin and D. Q. Zeng, “Homotopy perturbation method for the q-diffusion equation with a source term,” Communications in Fractional Calculus, vol. 3, no. 1, pp. 34–37, 2012.
  32. M. Javidi and M. A. Raji, “Combination of Laplace transform and homotopy perturbation method to solve the parabolic partial differential equations,” Communications in Fractional Calculus, vol. 3, no. 1, pp. 10–19, 2012.
  33. J. S. Duan, R. Rach, D. Buleanu, and A. M. Wazwaz, “A review of the Adomian decomposition method and its applications to fractional differential equations,” Communications in Fractional Calculus, vol. 3, no. 2, pp. 73–99, 2012.
  34. D. D. Ganji, “A semi-Analytical technique for non-linear settling particle equation of motion,” Journal of Hydro-Environment Research, vol. 6, no. 4, pp. 323–327, 2012. View at Publisher · View at Google Scholar
  35. J. Singh, D. Kumar, and Sushila, “Homotopy perturbation Sumudu transform method for nonlinear equations,” Advances in Applied Mathematics and Mechanics, vol. 4, pp. 165–175, 2011.
  36. A. Ghorbani and J. Saberi-Nadjafi, “He's homotopy perturbation method for calculating adomian polynomials,” International Journal of Nonlinear Sciences and Numerical Simulation, vol. 8, no. 2, pp. 229–232, 2007. View at Scopus
  37. A. Ghorbani, “Beyond Adomian polynomials: he polynomials,” Chaos, Solitons and Fractals, vol. 39, no. 3, pp. 1486–1492, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  38. S. Das and R. Kumar, “Approximate analytical solutions of fractional gas dynamic equations,” Applied Mathematics and Computation, vol. 217, no. 24, pp. 9905–9915, 2011. View at Publisher · View at Google Scholar · View at MathSciNet
  39. G. K. Watugala, “Sumudu transform—a new integral transform to solve differential equations and control engineering problems,” Mathematical Engineering in Industry, vol. 6, no. 4, pp. 319–329, 1998. View at Zentralblatt MATH · View at MathSciNet
  40. S. Weerakoon, “Application of Sumudu transform to partial differential equations,” International Journal of Mathematical Education in Science and Technology, vol. 25, no. 2, pp. 277–283, 1994. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  41. S. Weerakoon, “Complex inversion formula for Sumudu transform,” International Journal of Mathematical Education in Science and Technology, vol. 29, no. 4, pp. 618–621, 1998. View at Zentralblatt MATH · View at MathSciNet
  42. M. A. Aşiru, “Further properties of the Sumudu transform and its applications,” International Journal of Mathematical Education in Science and Technology, vol. 33, no. 3, pp. 441–449, 2002. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  43. A. Kadem, “Solving the one-dimensional neutron transport equation using Chebyshev polynomials and the Sumudu transform,” Analele Universitatii din Oradea, vol. 12, pp. 153–171, 2005. View at Zentralblatt MATH · View at MathSciNet
  44. A. Kılıçman, H. Eltayeb, and K. A. M. Atan, “A note on the comparison between Laplace and Sumudu transforms,” Iranian Mathematical Society, vol. 37, no. 1, pp. 131–141, 2011. View at Zentralblatt MATH · View at MathSciNet
  45. A. Kılıçman and H. E. Gadain, “On the applications of Laplace and Sumudu transforms,” Journal of the Franklin Institute, vol. 347, no. 5, pp. 848–862, 2010. View at Publisher · View at Google Scholar · View at MathSciNet
  46. H. Eltayeb, A. Kılıçman, and B. Fisher, “A new integral transform and associated distributions,” Integral Transforms and Special Functions, vol. 21, no. 5-6, pp. 367–379, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  47. A. Kılıçman and H. Eltayeb, “A note on integral transforms and partial differential equations,” Applied Mathematical Sciences, vol. 4, no. 1–4, pp. 109–118, 2010. View at Zentralblatt MATH · View at MathSciNet
  48. A. Kılıçman, H. Eltayeb, and R. P. Agarwal, “On Sumudu transform and system of differential equations,” Abstract and Applied Analysis, Article ID 598702, 11 pages, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  49. J. Zhang, “A Sumudu based algorithm for solving differential equations,” Academy of Sciences of Moldova, vol. 15, no. 3, pp. 303–313, 2007. View at Zentralblatt MATH · View at MathSciNet
  50. V. B. L. Chaurasia and J. Singh, “Application of Sumudu transform in Schödinger equation occurring in quantum mechanics,” Applied Mathematical Sciences, vol. 4, no. 57–60, pp. 2843–2850, 2010. View at MathSciNet
  51. G. Adomian, Solving Frontier Problems of Physics: The Decomposition Method, vol. 60 of Fundamental Theories of Physics, Kluwer Academic, Dordrecht, The Netherlands, 1994. View at MathSciNet
  52. Z. Odibat and S. Momani, “Numerical methods for nonlinear partial differential equations of fractional order,” Applied Mathematical Modelling, vol. 32, no. 1, pp. 28–39, 2008. View at Publisher · View at Google Scholar · View at Scopus