About this Journal Submit a Manuscript Table of Contents
Abstract and Applied Analysis
Volume 2013 (2013), Article ID 953786, 19 pages
http://dx.doi.org/10.1155/2013/953786
Research Article

Efficient Finite Element Methodology Based on Cartesian Grids: Application to Structural Shape Optimization

Centro de Investigación de Tecnología de Vehículos (CITV), Universidad Politècnica de València, 46022 Valencia, Spain

Received 25 January 2013; Accepted 20 February 2013

Academic Editor: Juan J. Nieto

Copyright © 2013 E. Nadal et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. A. Cottrell, T. J. R. Hughes, and Y. Bazilevs, Isogeometric Analysis: Toward Integration of CAD and FEA, Wiley, 1st edition, 2009.
  2. N. Moës, J. Dolbow, and T. Belytschko, “A finite element method for crack growth without remeshing,” International Journal for Numerical Methods in Engineering, vol. 46, no. 1, pp. 131–150, 1999. View at Scopus
  3. N. Sukumar and J. H. Prévost, “Modeling quasi-static crack growth with the extended finite element method. Part I: computer implementation,” International Journal of Solids and Structures, vol. 40, no. 26, pp. 7513–7537, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. T. Strouboulis, K. Copps, and I. Babuška, “The generalized finite element method,” Computer Methods in Applied Mechanics and Engineering, vol. 190, no. 32-33, pp. 4081–4193, 2001. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  5. T. Strouboulis, L. Zhang, and I. Babuška, “Assessment of the cost and accuracy of the generalized FEM,” International Journal for Numerical Methods in Engineering, vol. 69, no. 2, pp. 250–283, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  6. J. M. Melenk and I. Babuška, “The partition of unity finite element method: basic theory and applications,” Computer Methods in Applied Mechanics and Engineering, vol. 139, no. 1–4, pp. 289–314, 1996. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  7. M. Stolarska, D. L. Chopp, N. Moës, and T. Belytschko, “Modelling crack growth by level sets in the extended finite element method,” International Journal for Numerical Methods in Engineering, vol. 51, no. 8, pp. 943–960, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Moumnassi, S. Belouettar, E. Béchet, S. P. Bordas, D. Quoirin, and M. Potier-Ferry, “Finite element analysis on implicitly defined domains: an accurate representation based on arbitrary parametric surfaces,” Computer Methods in Applied Mechanics and Engineering, vol. 200, no. 5–8, pp. 774–796, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  9. W. D. Lian, G. Legrain, and P. Cartraud, “Image-based computational homogenization and localization: comparison between X-FEM/levelset and voxel-based approaches,” Computational Mechanics, vol. 51, no. 3, pp. 279–293, 2012.
  10. G. Legrain, N. Chevaugeon, and K. Dréau, “High order X-FEM and levelsets for complex microstructures: uncoupling geometry and approximation,” Computer Methods in Applied Mechanics and Engineering, vol. 241–244, pp. 172–189, 2012. View at Publisher · View at Google Scholar · View at MathSciNet
  11. E. Burman and P. Hansbo, “Fictitious domain finite element methods using cut elements: I. A stabilized Lagrange multiplier method,” Computer Methods in Applied Mechanics and Engineering, vol. 199, no. 41–44, pp. 2680–2686, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  12. E. Heikkola, Y. A. Kuznetsov, and K. N. Lipnikov, “Fictitious domain methods for the numerical solution of three-dimensional acoustic scattering problems,” Journal of Computational Acoustics, vol. 7, no. 3, pp. 161–193, 1999. View at Publisher · View at Google Scholar · View at MathSciNet
  13. U. Hetmaniuk and C. Farhat, “A finite element-based fictitious domain decomposition method for the fast solution of partially axisymmetric sound-hard acoustic scattering problems,” Finite Elements in Analysis and Design, vol. 39, no. 8, pp. 707–725, 2003. View at Publisher · View at Google Scholar · View at MathSciNet
  14. C. Farhat and U. Hetmaniuk, “A fictitious domain decomposition method for the solution of partially axisymmetric acoustic scattering problems. Part I: dirichlet boundary conditions,” International Journal for Numerical Methods in Engineering, vol. 54, no. 9, pp. 1309–1332, 2002. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  15. T. Ye, R. Mittal, H. S. Udaykumar, and W. Shyy, “An accurate cartesian grid method for viscous incompressible flows with complex immersed boundaries,” Journal of Computational Physics, vol. 156, no. 2, pp. 209–240, 1999. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Jahangirian and Y. Shoraka, “Adaptive unstructured grid generation for engineering computation of aerodynamic flows,” Mathematics and Computers in Simulation, vol. 78, no. 5-6, pp. 627–644, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  17. T. Preusser, M. Rumpf, and L. Schwen, “Finite element simulation of bone microstructures,” in Proceedings of the 14th FE Workshop, Ulm, Germany, July 2007.
  18. C. M. Silva Santos and D. M. Greaves, “Using hierarchical Cartesian grids with multigrid acceleration,” International Journal for Numerical Methods in Engineering, vol. 69, no. 8, pp. 1755–1774, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. I. Ramière, P. Angot, and M. Belliard, “Fictitious domain methods to solve convection-diffusion problems with general boundary conditions,” in Proceedings of the 17th Computational Fluid Dynamics Conference AIAA, Toronto, Canada, 2005.
  20. G. DeRose Jr. and A. R. Díaz, “Solving three-dimensional layout optimization problems using fixed scale wavelets,” Computational Mechanics, vol. 25, no. 2, pp. 274–285, 2000. View at Scopus
  21. G. Jang, Y. Kim, and K. Choy, “Remesh-free shape optimization using the wavelet-Galerkin method,” International Journal of Solids and Structrures, vol. 41, no. 22-23, pp. 6465–6483, 2004. View at Publisher · View at Google Scholar
  22. R. A. E. Mäkinen, T. Rossi, and J. Toivanen, “A moving mesh fictitious domain approach for shape optimization problems,” Mathematical Modelling and Numerical Analysis, vol. 34, no. 1, pp. 31–45, 2000. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  23. M. Victoria, O. M. Querin, and P. Martí, “Topology design for multiple loading conditions of continuum structures using isolines and isosurfaces,” Finite Elements in Analysis and Design, vol. 46, no. 3, pp. 229–237, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. L. Parussini and V. Pediroda, “Fictitious domain approach with hp-finite element approximation for incompressible fluid flow,” Journal of Computational Physics, vol. 228, no. 10, pp. 3891–3910, 2009. View at Publisher · View at Google Scholar · View at MathSciNet
  25. J. Bishop, “Rapid stress analysis of geometrically complex domains using implicit meshing,” Computational Mechanics, vol. 30, no. 5-6, pp. 460–478, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. L. Zhang, A. Gerstenberger, X. Wang, and W. K. Liu, “Immersed finite element method,” Computer Methods in Applied Mechanics and Engineering, vol. 193, no. 21-22, pp. 2051–2067, 2004. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  27. A. M. Roma, C. S. Peskin, and M. J. Berger, “An adaptive version of the immersed boundary method,” Journal of Computational Physics, vol. 153, no. 2, pp. 509–534, 1999. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  28. M. García-Ruíz and G. Steven, “Fixed grid finite elements in elasticity problems,” Engineering Computations, vol. 16, no. 2, pp. 145–164, 1999. View at Publisher · View at Google Scholar
  29. F. Daneshmand and M. J. Kazemzadeh-Parsi, “Static and dynamic analysis of 2D and 3D elastic solids using the modified FGFEM,” Finite Elements in Analysis and Design, vol. 45, no. 11, pp. 755–765, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. S. P. A. Bordas, T. Rabczuk, N. X. Hung et al., “Strain smoothing in FEM and XFEM,” Computers & Structures, vol. 88, no. 23-24, pp. 1419–1443, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. R. N. Simpson, S. P. A. Bordas, J. Trevelyan, and T. Rabczuk, “A two-dimensional isogeometric boundary element method for elastostatic analysis,” Computer Methods in Applied Mechanics and Engineering, vol. 209–212, pp. 87–100, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  32. M. Scott, R. Simpson, J. Evans et al., “Isogeometric boundary element analysis using unstructured T-splines,” Computer Methods in Applied Mechanics and Engineering, vol. 254, pp. 197–221, 2013. View at Publisher · View at Google Scholar
  33. T. J. R. Hughes, J. A. Cottrell, and Y. Bazilevs, “Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement,” Computer Methods in Applied Mechanics and Engineering, vol. 194, no. 39–41, pp. 4135–4195, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  34. O. C. Zienkiewicz and J. Z. Zhu, “A simple error estimator and adaptive procedure for practical engineering analysis,” International Journal for Numerical Methods in Engineering, vol. 24, no. 2, pp. 337–357, 1987. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  35. O. C. Zienkiewicz and J. Z. Zhu, “The superconvergent patch recovery and a posteriori error estimates. Part 1: the recovery technique,” International Journal for Numerical Methods in Engineering, vol. 33, no. 7, pp. 1331–1364, 1992. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  36. N. E. Wiberg, F. Abdulwahab, and S. Ziukas, “Enhanced superconvergent patch recovery incorporating equilibrium and boundary conditions,” International Journal for Numerical Methods in Engineering, vol. 37, no. 20, pp. 3417–3440, 1994. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  37. T. Blacker and T. Belytschko, “Superconvergent patch recovery with equilibrium and conjoint interpolant enhancements,” International Journal for Numerical Methods in Engineering, vol. 37, no. 3, pp. 517–536, 1994. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  38. A. C. A. Ramsay and E. A. W. Maunder, “Effective error estimation from continuous, boundary admissible estimated stress fields,” Computers & Structures, vol. 61, no. 2, pp. 331–343, 1996. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  39. J. J. Ródenas, M. Tur, F. J. Fuenmayor, and A. Vercher, “Improvement of the superconvergent patch recovery technique by the use of constraint equations: the SPR-C technique,” International Journal for Numerical Methods in Engineering, vol. 70, no. 6, pp. 705–727, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. P. Díez, J. J. Ródenas, and O. C. Zienkiewicz, “Equilibrated patch recovery error estimates: simple and accurate upper bounds of the error,” International Journal for Numerical Methods in Engineering, vol. 69, no. 10, pp. 2075–2098, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  41. J. J. Ródenas, E. Giner, F. J. Fuenmayor, and O. A. González-Estrada, “Accurate recoverytype error estimation for linear elastic fracture mechanics in FEM and XFEM based on a singular+smooth field splitting,” in Proceedings of the International Conference on Adaptive Modeling and Simulation (ADMOS '07), pp. 202–205, International Center for Numerical Methods in Engineering (CIMNE), 2007.
  42. J. J. Ródenas, O. A. González-Estrada, P. Díez, and F. J. Fuenmayor, “Accurate recovery-based upper error bounds for the extended finite element framework,” Computer Methods in Applied Mechanics and Engineering, vol. 199, no. 37–40, pp. 2607–2621, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  43. M. Ainsworth and J. T. Oden, A Posteriori Error Estimation in Finite Element Analysis, John Wiley & Sons, Chichester, UK, 2000. View at Publisher · View at Google Scholar · View at MathSciNet
  44. Q. Z. Xiao and B. L. Karihaloo, “Improving the accuracy of XFEM crack tip fields using higher order quadrature and statically admissible stress recovery,” International Journal for Numerical Methods in Engineering, vol. 66, no. 9, pp. 1378–1410, 2006. View at Publisher · View at Google Scholar · View at Scopus
  45. S. P. A. Bordas and M. Duflot, “Derivative recovery and a posteriori error estimate for extended finite elements,” Computer Methods in Applied Mechanics and Engineering, vol. 196, no. 35-36, pp. 3381–3399, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  46. S. P. A. Bordas, M. Duflot, and P. Le, “A simple error estimator for extended finite elements,” Communications in Numerical Methods in Engineering, vol. 24, no. 11, pp. 961–971, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  47. M. Duflot and S. P. A. Bordas, “A posteriori error estimation for extended finite elements by an extended global recovery,” International Journal for Numerical Methods in Engineering, vol. 76, no. 8, pp. 1123–1138, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  48. J. J. Ródenas, O. A. González-Estrada, J. E. Tarancón, and F. J. Fuenmayor, “A recovery-type error estimator for the extended finite element method based on singular+smooth stress field splitting,” International Journal for Numerical Methods in Engineering, vol. 76, no. 4, pp. 545–571, 2008. View at Publisher · View at Google Scholar · View at MathSciNet
  49. J. J. Ródenas, J. E. Tarancón, J. Albelda, A. Roda, and F. J. Fuenmayor, “Hierarchical properties in elements obtained by subdivision: a hierarquical h-adaptivity program,” in Adaptive Modeling and Simulation 2005, P. Díez and N. E. Wiberg, Eds., 2005.
  50. J. F. Abel and M. S. Shephard, “An algorithm for multipoint constraints in finite element analysis,” International Journal for Numerical Methods in Engineering, vol. 14, no. 3, pp. 464–467, 1979. View at Scopus
  51. C. Farhat, C. Lacour, and D. Rixen, “Incorporation of linear multipoint constraints in substructure based iterative solvers. Part 1: a numerically scalable algorithm,” International Journal for Numerical Methods in Engineering, vol. 43, no. 6, pp. 997–1016, 1998. View at Zentralblatt MATH · View at MathSciNet
  52. R. Loon, P. Anderson, J. Hart, and F. Baaijens, “A combined fictitious domain/adaptive meshing method for fluid-structure interaction in heart valves,” International Journal for Numerical Methods in Fluids, vol. 46, no. 5, pp. 533–544, 2004. View at Publisher · View at Google Scholar · View at Scopus
  53. B. Guo and I. Babuška, “The h-p version of the finite element method,” Computational Mechanics, vol. 1, no. 1, pp. 21–41, 1986. View at Publisher · View at Google Scholar
  54. R. Storn and K. Price, “Differential evolution-a simple and efficient adaptive scheme for global optimisation over continuous spaces,” Tech. Rep. TR-95-012, International Computer Science Institute, Berkeley, Calif, USA, 1995.
  55. J. J. Ródenas, G. Bugeda, J. Albelda, and E. Oñate, “On the need for the use of error-controlled finite element analyses in structural shape optimization processes,” International Journal for Numerical Methods in Engineering, vol. 87, no. 11, pp. 1105–1126, 2011. View at Publisher · View at Google Scholar · View at Scopus
  56. R. Löhner, J. Cebral, M. Castro et al., “Adaptive embedded unstructured grid methods,” in Mecánica computacional, G. Buscaglia, E. Dari, and O. Zamonsky, Eds., vol. 23, Bariloche, Argentina, 2004.
  57. F. J. Fuenmayor and J. L. Oliver, “Criteria to achieve nearly optimal meshes in the h-adaptive finite element method,” International Journal for Numerical Methods in Engineering, vol. 39, no. 23, pp. 4039–4061, 1996. View at Scopus
  58. O. C. Zienkiewicz and J. Z. Zhu, “The superconvergent patch recovery and a posteriori error estimates. Part 2: error estimates and adaptivity,” International Journal for Numerical Methods in Engineering, vol. 33, no. 7, pp. 1365–1382, 1992. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  59. O. C. Zienkiewicz, J. Z. Zhu, and J. Wu, “Superconvergent patch recovery techniques—some further tests,” Communications in Numerical Methods in Engineering, vol. 9, no. 3, pp. 251–258, 1993. View at Scopus
  60. O. C. Zienkiewicz and J. Z. Zhu, “Superconvergence and the superconvergent patch recovery,” Finite Elements in Analysis and Design, vol. 19, no. 1-2, pp. 11–23, 1995. View at Scopus
  61. J. J. Ródenas, O. A. González-Estrada, P. Díez, and F. J. Fuenmayor, “Upper bounds of the error in the extended finite element method by using an equilibrated-stress patch recovery technique,” in Proceedings of the International Conference on Adaptive Modeling and Simulation (ADMOS '07), pp. 210–213, International Center for Numerical Methods in Engineering (CIMNE), 2007.
  62. E. Nadal, S. Bordas, J. J. Ródenas, J. E. Tarancón, and M. Tur, “Accurate stress recovery for the two-dimensional fixed grid finite element method,” in Procedings of the 10th International Conference on Computational Structures Technology, pp. 1–20, 2010.
  63. E. Nadal, O. A. González-Estrada, J. J. Ródenas, S. P. A. Bordas, and F. J. Fuenmayor, “Error estimation and error bounding in energy norm based on a displacement recovery technique,” in Proceedings of the 6th European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS '12), Eccomas, Vienna, Austria, 2012.
  64. E. Nadal, O. González-Estrada, J. Ródenas, and F. Fuenmayor, “Report: Error estimation of recovered solution in FE analysis,” 1–31, November 2012.