About this Journal Submit a Manuscript Table of Contents
Abstract and Applied Analysis
Volume 2013 (2013), Article ID 954983, 9 pages
http://dx.doi.org/10.1155/2013/954983
Research Article

A New Numerical Algorithm for Solving a Class of Fractional Advection-Dispersion Equation with Variable Coefficients Using Jacobi Polynomials

1Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
2Department of Mathematics, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt

Received 17 August 2013; Accepted 17 September 2013

Academic Editor: Dumitru Baleanu

Copyright © 2013 A. H. Bhrawy. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral Methods: Fundamentals in Single Domains, Springer, New York, NY, USA, 2006. View at MathSciNet
  2. D. Baleanu, A. H. Bhrawy, and T. M. Taha, “Two efficient generalized Laguerre spectral algorithms for fractional initial value problems,” Abstract and Applied Analysis, vol. 2013, Article ID 546502, 10 pages, 2013. View at Publisher · View at Google Scholar · View at MathSciNet
  3. D. Baleanu, A. H. Bhrawy, and T. M. Taha, “A modified generalized Laguerre spectral methods for fractional differential equations on the half line,” Abstract and Applied Analysis, vol. 2013, Article ID 413529, 12 pages, 2013. View at Publisher · View at Google Scholar
  4. A. H. Bhrawy and A. S. Alofi, “The operational matrix of fractional integration for shifted Chebyshev polynomials,” Applied Mathematics Letters, vol. 26, no. 1, pp. 25–31, 2013. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  5. E. H. Doha, A. H. Bhrawy, and S. S. Ezz-Eldien, “A new Jacobi operational matrix: an application for solving fractional differential equations,” Applied Mathematical Modelling, vol. 36, no. 10, pp. 4931–4943, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  6. J. A. Rad, S. Kazem, M. Shaban, K. Parand, and A. Yildirim, “Numerical solution of fractional differential equations with a Tau method based on Legendre and Bernstein polynomials,” Mathematical Methods in the Applied Sciences, 2013. View at Publisher · View at Google Scholar
  7. A. H. Bhrawy and A. S. Alofi, “A Jacobi-Gauss collocation method for solving nonlinear Lane-Emden type equations,” Communications in Nonlinear Science and Numerical Simulation, vol. 17, no. 1, pp. 62–70, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  8. R. Mohammadi, “B-spline collocation algorithm for numerical solution of the generalized Burger's-Huxley equation,” Numerical Methods for Partial Differential Equations, vol. 29, no. 4, pp. 1173–1191, 2013. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  9. I. Podlubny, Fractional Differential Equations, Academic Press Inc., New York, NY, USA, 1999. View at MathSciNet
  10. Y. Zhang, D. A. Benson, and D. M. Reeves, “Time and space nonlocalities underlying fractional-derivative models: distinction and literature review of field applications,” Advances in Water Resources, vol. 32, no. 4, pp. 561–581, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. R. K. Pandey, Om. P. Singh, and V. K. Baranwal, “An analytic algorithm for the space-time fractional advection-dispersion equation,” Computer Physics Communications, vol. 182, no. 5, pp. 1134–1144, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  12. Rajeev and M. S. Kushwaha, “Homotopy perturbation method for a limit case Stefan problem governed by fractional diffusion equation,” Applied Mathematical Modelling, vol. 37, no. 5, pp. 3589–3599, 2013. View at MathSciNet
  13. A. Golbabai and K. Sayevand, “Analytical modelling of fractional advection-dispersion equation defined in a bounded space domain,” Mathematical and Computer Modelling, vol. 53, no. 9-10, pp. 1708–1718, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  14. S. Momani and Z. Odibat, “Numerical solutions of the space-time fractional advection-dispersion equation,” Numerical Methods for Partial Differential Equations, vol. 24, no. 6, pp. 1416–1429, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  15. J. Bear, Hydraulics of Groundwater, McGraw-Hill, New York, NY, USA, 1979.
  16. Q. Huang, G. Huang, and H. Zhan, “A finite element solution for the fractional advection-dispersion equation,” Advances in Water Resources, vol. 31, no. 12, pp. 1578–1589, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. R. Hilfer, Ed., Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000.
  18. F. Mainardi, “Fractional calculus: some basic problems in continuum and statistical mechanics,” in Fractals and Fractional Calculus in Continuum Mechanics, A. Carpinteri and F. Mainardi, Eds., vol. 378, pp. 291–348, Springer, New York, NY, USA, 1997. View at MathSciNet
  19. R. Metzler and J. Klafter, “The random walk's guide to anomalous diffusion: a fractional dynamics approach,” Physics Reports, vol. 339, no. 1, pp. 1–77, 2000. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  20. R. Metzler and J. Klafter, “The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics,” Journal of Physics A, vol. 37, no. 31, pp. R161–R208, 2004. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  21. V. V. Uchaikin, Method of Fractional Derivatives, Artishok, Uljanovsk, Russia, 2008.
  22. F. A. Rihan, “Computational methods for delay parabolic and time-fractional partial differential equations,” Numerical Methods for Partial Differential Equations, vol. 26, no. 6, pp. 1556–1571, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  23. M. M. Meerschaert and C. Tadjeran, “Finite difference approximations for fractional advection-dispersion flow equations,” Journal of Computational and Applied Mathematics, vol. 172, no. 1, pp. 65–77, 2004. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  24. M. M. Meerschaert and C. Tadjeran, “Finite difference approximations for two-sided space-fractional partial differential equations,” Applied Numerical Mathematics, vol. 56, no. 1, pp. 80–90, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  25. M. M. Meerschaert, H.-P. Scheffler, and C. Tadjeran, “Finite difference methods for two-dimensional fractional dispersion equation,” Journal of Computational Physics, vol. 211, no. 1, pp. 249–261, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  26. C. Tadjeran and M. M. Meerschaert, “A second-order accurate numerical method for the two-dimensional fractional diffusion equation,” Journal of Computational Physics, vol. 220, no. 2, pp. 813–823, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  27. S. Shen and F. Liu, “Error analysis of an explicit finite difference approximation for the space fractional diffusion equation with insulated ends,” The ANZIAM Journal, vol. 46, pp. C871–C887, 2005. View at MathSciNet
  28. Z. Ding, A. Xiao, and M. Li, “Weighted finite difference methods for a class of space fractional partial differential equations with variable coefficients,” Journal of Computational and Applied Mathematics, vol. 233, no. 8, pp. 1905–1914, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  29. K. Wang and H. Wang, “A fast characteristic finite difference method for fractional advection-diffusion equations,” Advances in Water Resources, vol. 34, no. 7, pp. 810–816, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. A. Saadatmandi, M. Dehghan, and M.-R. Azizi, “The sinc-Legendre collocation method for a class of fractional convection-diffusion equations with variable coefficients,” Communications in Nonlinear Science and Numerical Simulation, vol. 17, no. 11, pp. 4125–4136, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  31. W. Jiang and Y. Lin, “Approximate solution of the fractional advection-dispersion equation,” Computer Physics Communications, vol. 181, no. 3, pp. 557–561, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  32. F. Liu, P. Zhuang, and K. Burrage, “Numerical methods and analysis for a class of fractional advection-dispersion models,” Computers & Mathematics with Applications, vol. 64, no. 10, pp. 2990–3007, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  33. S. Abdi-mazraeh, M. Lakestani, and M. Dehghan, “The construction of operational matrices of integral and fractional integral using the flatlet oblique multiwavelets,” Journal of Vibration and Control, 2013. View at Publisher · View at Google Scholar
  34. D. Baleanu, K. Diethelm, E. Scalas, and J. J. Trujillo, Fractional Calculus Models and Numerical Methods, vol. 3 of Complexity, Nonlinearity and Chaos, World Scientific Publishing, Singapore, 2012. View at Publisher · View at Google Scholar · View at MathSciNet
  35. Szegő and Gábor, Orthogonal Polynomials, Colloquium Publications. XXIII. American Mathematical Society, 1939.
  36. E. H. Doha and A. H. Bhrawy, “Efficient spectral-Galerkin algorithms for direct solution of fourth-order differential equations using Jacobi polynomials,” Applied Numerical Mathematics, vol. 58, no. 8, pp. 1224–1244, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  37. E. H. Doha, A. H. Bhrawy, and R. M. Hafez, “A Jacobi-Jacobi dual-Petrov-Galerkin method for third- and fifth-order differential equations,” Mathematical and Computer Modelling, vol. 53, no. 9-10, pp. 1820–1832, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  38. A. H. Bhrawy, “A. Jacobi-Gauss-Lobatto Collocation method for solving generalized Fitzhugh-Nagumo equation with time-dependent coefficients,” Applied Mathematics and Computation, vol. 222, pp. 255–264, 2013.
  39. L. Su, W. Wang, and Q. Xu, “Finite difference methods for fractional dispersion equations,” Applied Mathematics and Computation, vol. 216, no. 11, pp. 3329–3334, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  40. G. J. Fix and J. P. Roop, “Least squares finite-element solution of a fractional order two-point boundary value problem,” Computers & Mathematics with Applications, vol. 48, no. 7-8, pp. 1017–1033, 2004. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  41. H. Risken, The Fokker Planck Equation, Springer, Berlin, Germany, 1988.
  42. C. Tadjeran, M. M. Meerschaert, and H.-P. Scheffler, “A second-order accurate numerical approximation for the fractional diffusion equation,” Journal of Computational Physics, vol. 213, no. 1, pp. 205–213, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  43. E. Sousa, “Numerical approximations for fractional diffusion equations via splines,” Computers & Mathematics with Applications, vol. 62, no. 3, pp. 938–944, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  44. A. Saadatmandi and M. Dehghan, “A tau approach for solution of the space fractional diffusion equation,” Computers & Mathematics with Applications, vol. 62, no. 3, pp. 1135–1142, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  45. E. A. Abdel-Rehim and R. Gorenflo, “Simulation of the continuous time random walk of the space-fractional diffusion equations,” Journal of Computational and Applied Mathematics, vol. 222, no. 2, pp. 274–283, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  46. E. H. Doha, A. H. Bhrawy, and S. S. Ezz-Eldien, “Efficient Chebyshev spectral methods for solving multi-term fractional orders differential equations,” Applied Mathematical Modelling, vol. 35, no. 12, pp. 5662–5672, 2011. View at Publisher · View at Google Scholar · View at Scopus
  47. B.-Y. Guo and L.-I. Wang, “Jacobi approximations in non-uniformly Jacobi-weighted Sobolev spaces,” Journal of Approximation Theory, vol. 128, no. 1, pp. 1–41, 2004. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  48. S. S. Ray, K. S. Chaudhuri, and R. K. Bera, “Application of modified decomposition method for the analytical solution of space fractional diffusion equation,” Applied Mathematics and Computation, vol. 196, no. 1, pp. 294–302, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  49. H. W. Choi, S. K. Chung, and Y. J. Lee, “Numerical solutions for space fractional dispersion equations with nonlinear source terms,” Bulletin of the Korean Mathematical Society, vol. 47, no. 6, pp. 1225–1234, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  50. E. Sousa, “A second order explicit finite difference method for the fractional advection diffusion equation,” Computers & Mathematics with Applications, vol. 64, no. 10, pp. 3141–3152, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet