Journal Menu

- About this Journal ·
- Abstracting and Indexing ·
- Aims and Scope ·
- Annual Issues ·
- Article Processing Charges ·
- Articles in Press ·
- Author Guidelines ·
- Bibliographic Information ·
- Citations to this Journal ·
- Contact Information ·
- Editorial Board ·
- Editorial Workflow ·
- Free eTOC Alerts ·
- Publication Ethics ·
- Reviewers Acknowledgment ·
- Submit a Manuscript ·
- Subscription Information ·
- Table of Contents

Abstract and Applied Analysis

Volume 2013 (2013), Article ID 954983, 9 pages

http://dx.doi.org/10.1155/2013/954983

Research Article

## A New Numerical Algorithm for Solving a Class of Fractional Advection-Dispersion Equation with Variable Coefficients Using Jacobi Polynomials

^{1}Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia^{2}Department of Mathematics, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt

Received 17 August 2013; Accepted 17 September 2013

Academic Editor: Dumitru Baleanu

Copyright © 2013 A. H. Bhrawy. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

#### Linked References

- C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang,
*Spectral Methods: Fundamentals in Single Domains*, Springer, New York, NY, USA, 2006. View at MathSciNet - D. Baleanu, A. H. Bhrawy, and T. M. Taha, “Two efficient generalized Laguerre spectral algorithms for fractional initial value problems,”
*Abstract and Applied Analysis*, vol. 2013, Article ID 546502, 10 pages, 2013. View at Publisher · View at Google Scholar · View at MathSciNet - D. Baleanu, A. H. Bhrawy, and T. M. Taha, “A modified generalized Laguerre spectral methods for fractional differential equations on the half line,”
*Abstract and Applied Analysis*, vol. 2013, Article ID 413529, 12 pages, 2013. View at Publisher · View at Google Scholar - A. H. Bhrawy and A. S. Alofi, “The operational matrix of fractional integration for shifted Chebyshev polynomials,”
*Applied Mathematics Letters*, vol. 26, no. 1, pp. 25–31, 2013. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet - E. H. Doha, A. H. Bhrawy, and S. S. Ezz-Eldien, “A new Jacobi operational matrix: an application for solving fractional differential equations,”
*Applied Mathematical Modelling*, vol. 36, no. 10, pp. 4931–4943, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet - J. A. Rad, S. Kazem, M. Shaban, K. Parand, and A. Yildirim, “Numerical solution of fractional differential equations with a Tau method based on Legendre and Bernstein polynomials,”
*Mathematical Methods in the Applied Sciences*, 2013. View at Publisher · View at Google Scholar - A. H. Bhrawy and A. S. Alofi, “A Jacobi-Gauss collocation method for solving nonlinear Lane-Emden type equations,”
*Communications in Nonlinear Science and Numerical Simulation*, vol. 17, no. 1, pp. 62–70, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet - R. Mohammadi, “B-spline collocation algorithm for numerical solution of the generalized Burger's-Huxley equation,”
*Numerical Methods for Partial Differential Equations*, vol. 29, no. 4, pp. 1173–1191, 2013. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet - I. Podlubny,
*Fractional Differential Equations*, Academic Press Inc., New York, NY, USA, 1999. View at MathSciNet - Y. Zhang, D. A. Benson, and D. M. Reeves, “Time and space nonlocalities underlying fractional-derivative models: distinction and literature review of field applications,”
*Advances in Water Resources*, vol. 32, no. 4, pp. 561–581, 2009. View at Publisher · View at Google Scholar · View at Scopus - R. K. Pandey, Om. P. Singh, and V. K. Baranwal, “An analytic algorithm for the space-time fractional advection-dispersion equation,”
*Computer Physics Communications*, vol. 182, no. 5, pp. 1134–1144, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet - Rajeev and M. S. Kushwaha, “Homotopy perturbation method for a limit case Stefan problem governed by fractional diffusion equation,”
*Applied Mathematical Modelling*, vol. 37, no. 5, pp. 3589–3599, 2013. View at Google Scholar · View at MathSciNet - A. Golbabai and K. Sayevand, “Analytical modelling of fractional advection-dispersion equation defined in a bounded space domain,”
*Mathematical and Computer Modelling*, vol. 53, no. 9-10, pp. 1708–1718, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet - S. Momani and Z. Odibat, “Numerical solutions of the space-time fractional advection-dispersion equation,”
*Numerical Methods for Partial Differential Equations*, vol. 24, no. 6, pp. 1416–1429, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet - J. Bear,
*Hydraulics of Groundwater*, McGraw-Hill, New York, NY, USA, 1979. - Q. Huang, G. Huang, and H. Zhan, “A finite element solution for the fractional advection-dispersion equation,”
*Advances in Water Resources*, vol. 31, no. 12, pp. 1578–1589, 2008. View at Publisher · View at Google Scholar · View at Scopus - R. Hilfer, Ed.,
*Applications of Fractional Calculus in Physics*, World Scientific, Singapore, 2000. - F. Mainardi, “Fractional calculus: some basic problems in continuum and statistical mechanics,” in
*Fractals and Fractional Calculus in Continuum Mechanics*, A. Carpinteri and F. Mainardi, Eds., vol. 378, pp. 291–348, Springer, New York, NY, USA, 1997. View at Google Scholar · View at MathSciNet - R. Metzler and J. Klafter, “The random walk's guide to anomalous diffusion: a fractional dynamics approach,”
*Physics Reports*, vol. 339, no. 1, pp. 1–77, 2000. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet - R. Metzler and J. Klafter, “The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics,”
*Journal of Physics A*, vol. 37, no. 31, pp. R161–R208, 2004. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet - V. V. Uchaikin,
*Method of Fractional Derivatives*, Artishok, Uljanovsk, Russia, 2008. - F. A. Rihan, “Computational methods for delay parabolic and time-fractional partial differential equations,”
*Numerical Methods for Partial Differential Equations*, vol. 26, no. 6, pp. 1556–1571, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet - M. M. Meerschaert and C. Tadjeran, “Finite difference approximations for fractional advection-dispersion flow equations,”
*Journal of Computational and Applied Mathematics*, vol. 172, no. 1, pp. 65–77, 2004. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet - M. M. Meerschaert and C. Tadjeran, “Finite difference approximations for two-sided space-fractional partial differential equations,”
*Applied Numerical Mathematics*, vol. 56, no. 1, pp. 80–90, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet - M. M. Meerschaert, H.-P. Scheffler, and C. Tadjeran, “Finite difference methods for two-dimensional fractional dispersion equation,”
*Journal of Computational Physics*, vol. 211, no. 1, pp. 249–261, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet - C. Tadjeran and M. M. Meerschaert, “A second-order accurate numerical method for the two-dimensional fractional diffusion equation,”
*Journal of Computational Physics*, vol. 220, no. 2, pp. 813–823, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet - S. Shen and F. Liu, “Error analysis of an explicit finite difference approximation for the space fractional diffusion equation with insulated ends,”
*The ANZIAM Journal*, vol. 46, pp. C871–C887, 2005. View at Google Scholar · View at MathSciNet - Z. Ding, A. Xiao, and M. Li, “Weighted finite difference methods for a class of space fractional partial differential equations with variable coefficients,”
*Journal of Computational and Applied Mathematics*, vol. 233, no. 8, pp. 1905–1914, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet - K. Wang and H. Wang, “A fast characteristic finite difference method for fractional advection-diffusion equations,”
*Advances in Water Resources*, vol. 34, no. 7, pp. 810–816, 2011. View at Publisher · View at Google Scholar · View at Scopus - A. Saadatmandi, M. Dehghan, and M.-R. Azizi, “The sinc-Legendre collocation method for a class of fractional convection-diffusion equations with variable coefficients,”
*Communications in Nonlinear Science and Numerical Simulation*, vol. 17, no. 11, pp. 4125–4136, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet - W. Jiang and Y. Lin, “Approximate solution of the fractional advection-dispersion equation,”
*Computer Physics Communications*, vol. 181, no. 3, pp. 557–561, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet - F. Liu, P. Zhuang, and K. Burrage, “Numerical methods and analysis for a class of fractional advection-dispersion models,”
*Computers & Mathematics with Applications*, vol. 64, no. 10, pp. 2990–3007, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet - S. Abdi-mazraeh, M. Lakestani, and M. Dehghan, “The construction of operational matrices of integral and fractional integral using the flatlet oblique multiwavelets,”
*Journal of Vibration and Control*, 2013. View at Publisher · View at Google Scholar - D. Baleanu, K. Diethelm, E. Scalas, and J. J. Trujillo,
*Fractional Calculus Models and Numerical Methods*, vol. 3 of*Complexity, Nonlinearity and Chaos*, World Scientific Publishing, Singapore, 2012. View at Publisher · View at Google Scholar · View at MathSciNet - Szegő and Gábor,
*Orthogonal Polynomials*, Colloquium Publications. XXIII. American Mathematical Society, 1939. - E. H. Doha and A. H. Bhrawy, “Efficient spectral-Galerkin algorithms for direct solution of fourth-order differential equations using Jacobi polynomials,”
*Applied Numerical Mathematics*, vol. 58, no. 8, pp. 1224–1244, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet - E. H. Doha, A. H. Bhrawy, and R. M. Hafez, “A Jacobi-Jacobi dual-Petrov-Galerkin method for third- and fifth-order differential equations,”
*Mathematical and Computer Modelling*, vol. 53, no. 9-10, pp. 1820–1832, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet - A. H. Bhrawy, “A. Jacobi-Gauss-Lobatto Collocation method for solving generalized Fitzhugh-Nagumo equation with time-dependent coefficients,”
*Applied Mathematics and Computation*, vol. 222, pp. 255–264, 2013. View at Google Scholar - L. Su, W. Wang, and Q. Xu, “Finite difference methods for fractional dispersion equations,”
*Applied Mathematics and Computation*, vol. 216, no. 11, pp. 3329–3334, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet - G. J. Fix and J. P. Roop, “Least squares finite-element solution of a fractional order two-point boundary value problem,”
*Computers & Mathematics with Applications*, vol. 48, no. 7-8, pp. 1017–1033, 2004. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet - H. Risken,
*The Fokker Planck Equation*, Springer, Berlin, Germany, 1988. - C. Tadjeran, M. M. Meerschaert, and H.-P. Scheffler, “A second-order accurate numerical approximation for the fractional diffusion equation,”
*Journal of Computational Physics*, vol. 213, no. 1, pp. 205–213, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet - E. Sousa, “Numerical approximations for fractional diffusion equations via splines,”
*Computers & Mathematics with Applications*, vol. 62, no. 3, pp. 938–944, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet - A. Saadatmandi and M. Dehghan, “A tau approach for solution of the space fractional diffusion equation,”
*Computers & Mathematics with Applications*, vol. 62, no. 3, pp. 1135–1142, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet - E. A. Abdel-Rehim and R. Gorenflo, “Simulation of the continuous time random walk of the space-fractional diffusion equations,”
*Journal of Computational and Applied Mathematics*, vol. 222, no. 2, pp. 274–283, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet - E. H. Doha, A. H. Bhrawy, and S. S. Ezz-Eldien, “Efficient Chebyshev spectral methods for solving multi-term fractional orders differential equations,”
*Applied Mathematical Modelling*, vol. 35, no. 12, pp. 5662–5672, 2011. View at Publisher · View at Google Scholar · View at Scopus - B.-Y. Guo and L.-I. Wang, “Jacobi approximations in non-uniformly Jacobi-weighted Sobolev spaces,”
*Journal of Approximation Theory*, vol. 128, no. 1, pp. 1–41, 2004. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet - S. S. Ray, K. S. Chaudhuri, and R. K. Bera, “Application of modified decomposition method for the analytical solution of space fractional diffusion equation,”
*Applied Mathematics and Computation*, vol. 196, no. 1, pp. 294–302, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet - H. W. Choi, S. K. Chung, and Y. J. Lee, “Numerical solutions for space fractional dispersion equations with nonlinear source terms,”
*Bulletin of the Korean Mathematical Society*, vol. 47, no. 6, pp. 1225–1234, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet - E. Sousa, “A second order explicit finite difference method for the fractional advection diffusion equation,”
*Computers & Mathematics with Applications*, vol. 64, no. 10, pp. 3141–3152, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet