About this Journal Submit a Manuscript Table of Contents
Abstract and Applied Analysis
Volume 2014 (2014), Article ID 135690, 12 pages
http://dx.doi.org/10.1155/2014/135690
Research Article

Finite-Time Observer Based Cooperative Tracking Control of Networked Lagrange Systems

College of Automation, Chongqing University, Chongqing 400044, China

Received 25 February 2014; Revised 24 June 2014; Accepted 27 June 2014; Published 13 July 2014

Academic Editor: Peng Shi

Copyright © 2014 Gang Chen and Qing Lin. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, and O. Shochet, “Novel type of phase transition in a system of self-driven particles,” Physical Review Letters, vol. 75, no. 6, article 1226, 1995. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Jadbabaie, J. Lin, and A. S. Morse, “Coordination of groups of mobile autonomous agents using nearest neighbor rules,” IEEE Transactions on Automatic Control, vol. 48, no. 6, pp. 988–1001, 2003. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  3. G. Chen, F. L. Lewis, and L. Xie, “Finite-time distributed consensus via binary control protocols,” Automatica, vol. 47, no. 9, pp. 1962–1968, 2011. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  4. L. Moreau, “Stability of multiagent systems with time-dependent communication links,” IEEE Transactions on Automatic Control, vol. 50, no. 2, pp. 169–182, 2005. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  5. R. Olfati-Saber and R. M. Murray, “Consensus problems in networks of agents with switching topology and time-delays,” IEEE Transactions on Automatic Control, vol. 49, no. 9, pp. 1520–1533, 2004. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  6. W. Ren and R. W. Beard, “Consensus seeking in multiagent systems under dynamically changing interaction topologies,” IEEE Transactions on Automatic Control, vol. 50, no. 5, pp. 655–661, 2005. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  7. G. Chen and F. L. Lewis, “Robust consensus of multiple inertial agents with coupling delays and variable topologies,” International Journal of Robust and Nonlinear Control, vol. 21, no. 6, pp. 666–685, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  8. A. Rodriguez-Angeles and H. Nijmeijer, “Mutual synchronization of robots via estimated state feedback: a cooperative approach,” IEEE Transactions on Control Systems Technology, vol. 12, no. 4, pp. 542–554, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. W. Ren, “Distributed leaderless consensus algorithms for networked Euler-Lagrange systems,” International Journal of Control, vol. 82, no. 11, pp. 2137–2149, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  10. Z. G. Hou, L. Cheng, and M. Tan, “Decentralized robust adaptive control for the multiagent system consensus problem using neural networks,” IEEE Transactions on Systems, Man, and Cybernetics B: Cybernetics, vol. 39, no. 3, pp. 636–647, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. G. Chen, Y. Yue, and Y. Song, “Finite-time cooperative-tracking control for networked Euler-Lagrange systems,” IET Control Theory & Applications, vol. 7, no. 11, pp. 1487–1497, 2013. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  12. G. Chen and F. L. Lewis, “Distributed adaptive tracking control for synchronization of unknown networked lagrangian systems,” IEEE Transactions on Systems, Man, and Cybernetics B: Cybernetics, vol. 41, no. 3, pp. 805–816, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. D. D. Šiljak, “Reliable control using multiple control systems,” International Journal of Control, vol. 31, no. 2, pp. 303–329, 1980. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  14. R. J. Veillette, J. V. Medanic, and W. R. Perkins, “Design of reliable control systems,” IEEE Transactions on Automatic Control, vol. 37, no. 3, pp. 290–304, 1992. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  15. Q. Zhao and J. Jiang, “Reliable state feedback control systems designs against actuator failures,” Automatica, vol. 34, no. 10, pp. 1267–1272, 1998. View at Publisher · View at Google Scholar · View at Scopus
  16. S. X. Ding, Model Based Fault Diagnosis Techniques Design Schemes, Algorithms and Tools, Springer, New York, NY, USA, 2008.
  17. Y. J. Ma, B. Jiang, G. Tao, and Y. H. Cheng, “A direct adaptive actuator failure compensation scheme for satellite attitude control systems,” Journal of Aerospace Engineering, vol. 228, no. 4, pp. 542–556, 2014.
  18. J. Chen and R. J. Patton, Robust Model-Based Fault Diagnosis for Dynamic Systems, Kluwer Academic Publishers, Boston, Mass, USA, 1999.
  19. G. Ducard, Fault-Tolerant Flight Control and Guidance Systems, Springer, New York, NY, USA, 2009.
  20. B. Xiao, Q. Hu, and M. I. Friswell, “Robust fault tolerant control for spacecraft attitude stabilization under actuator faults and bounded disturbance,” Transactions of the ASME Journal of Dynamic Systems Measurement and Control, vol. 133, no. 5, Article ID 051006, 8 pages, 2011. View at Publisher · View at Google Scholar
  21. B. Jiang, Z. Gao, P. Shi, and Y. Xu, “Adaptive fault-tolerant tracking control of near-space vehicle using TakagiSugeno fuzzy models,” IEEE Transactions on Fuzzy Systems, vol. 18, no. 5, pp. 1000–1007, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. L. X. Wang, “Fuzzy systems are universal approximators,” in Proceedings of the IEEE International Conference on Fuzzy Systems, pp. 1163–1170, San Diego, CA, USA, March 1992. View at Scopus
  23. L. Wang and J. M. Mendel, “Fuzzy basis functions, universal approximation, and orthogonal least-squares learning,” IEEE Transactions on Neural Networks, vol. 3, no. 5, pp. 807–814, 1992. View at Publisher · View at Google Scholar · View at Scopus
  24. X. Su, L. Wu, P. Shi, and Y. Song, “H model reduction of Takagi-Sugeno fuzzy stochastic systems,” IEEE Transactions on Systems, Man, and Cybernetics B: Cybernetics, vol. 42, no. 6, pp. 1574–1585, 2012. View at Publisher · View at Google Scholar · View at Scopus
  25. J. M. Danskin, “The theory of max-min, with applications,” SIAM Journal on Applied Mathematics, vol. 14, pp. 641–664, 1966. View at Publisher · View at Google Scholar · View at MathSciNet