About this Journal Submit a Manuscript Table of Contents
Abstract and Applied Analysis
Volume 2014 (2014), Article ID 154725, 14 pages
http://dx.doi.org/10.1155/2014/154725
Research Article

Global Stability of Multigroup SIRS Epidemic Model with Varying Population Sizes and Stochastic Perturbation around Equilibrium

School of Mathematical Sciences, Harbin Normal University, Harbin 150500, China

Received 8 October 2013; Accepted 17 December 2013; Published 20 January 2014

Academic Editor: Francisco Solís Lozano

Copyright © 2014 Xiaoming Fan. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Ji, D. Jiang, and N. Shi, “Multigroup SIR epidemic model with stochastic perturbation,” Physica A, vol. 390, no. 10, pp. 1747–1762, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Lajmanovich and J. A. Yorke, “A deterministic model for gonorrhea in a nonhomogeneous population,” Mathematical Biosciences, vol. 28, no. 3-4, pp. 221–236, 1976. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  3. E. Beretta and V. Capasso, “Global stability results for a multigroup SIR epidemic model,” in Mathematical Ecology, T. G. Hallam, L. J. Gross, and S. A. Levin, Eds., pp. 317–342, World Scientific, Teaneck, NJ, USA, 1988. View at Zentralblatt MATH · View at MathSciNet
  4. H. W. Hethcote, “An immunization model for a heterogeneous population,” Theoretical Population Biology, vol. 14, no. 3, pp. 338–349, 1978. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  5. H. W. Hethcote and H. R. Thieme, “Stability of the endemic equilibrium in epidemic models with subpopulations,” Mathematical Biosciences, vol. 75, no. 2, pp. 205–227, 1985. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  6. H. R. Thieme, “Local stability in epidemic models for heterogeneous populations,” in Mathematics in Biology and Medicine, V. Capasso, E. Grosso, and S. L. Paveri-Fontana, Eds., vol. 57 of Lecture Notes in Biomathematics, pp. 185–189, Springer, Berlin, Germany, 1985. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  7. H. R. Thieme, Mathematics in Population Biology, Princeton University Press, Princeton, NJ, USA, 2003. View at MathSciNet
  8. H. Guo, M. Y. Li, and Z. Shuai, “A graph-theoretic approach to the method of global Lyapunov functions,” Proceedings of the American Mathematical Society, vol. 136, no. 8, pp. 2793–2802, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  9. M. Y. Li, Z. Shuai, and C. Wang, “Global stability of multi-group epidemic models with distributed delays,” Journal of Mathematical Analysis and Applications, vol. 361, no. 1, pp. 38–47, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  10. H. Guo, M. Y. Li, and Z. Shuai, “Global stability of the endemic equilibrium of multigroup SIR epidemic models,” Canadian Applied Mathematics Quarterly, vol. 14, no. 3, pp. 259–284, 2006. View at Zentralblatt MATH · View at MathSciNet
  11. Y. Muroya, Y. Enatsu, and T. Kuniya, “Global stability for a multi-group SIRS epidemic model with varying population sizes,” Nonlinear Analysis: Real World Applications, vol. 14, no. 3, pp. 1693–1704, 2013. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  12. Y. Nakata, Y. Enatsu, and Y. Muroya, “On the global stability of an SIRS epidemic model with distributed delays,” Discrete and Continuous Dynamical Systems A, vol. 2011, pp. 1119–1128, 2011. View at Publisher · View at Google Scholar · View at MathSciNet
  13. Y. Enatsu, Y. Nakata, and Y. Muroya, “Lyapunov functional techniques for the global stability analysis of a delayed SIRS epidemic model,” Nonlinear Analysis: Real World Applications, vol. 13, no. 5, pp. 2120–2133, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  14. C. C. McCluskey, “Complete global stability for an SIR epidemic model with delay—distributed or discrete,” Nonlinear Analysis: Real World Applications, vol. 11, no. 1, pp. 55–59, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  15. N. Dalal, D. Greenhalgh, and X. Mao, “A stochastic model of AIDS and condom use,” Journal of Mathematical Analysis and Applications, vol. 325, no. 1, pp. 36–53, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  16. C. Ji, D. Jiang, and N. Shi, “Analysis of a predator-prey model with modified Leslie-Gower and Holling-type II schemes with stochastic perturbation,” Journal of Mathematical Analysis and Applications, vol. 359, no. 2, pp. 482–498, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  17. C. Ji, D. Jiang, and X. Li, “Qualitative analysis of a stochastic ratio-dependent predator-prey system,” Journal of Computational and Applied Mathematics, vol. 235, no. 5, pp. 1326–1341, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  18. E. Tornatore, S. M. Buccellato, and P. Vetro, “Stability of a stochastic SIR system,” Physica A, vol. 354, no. 1–4, pp. 111–126, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. E. Beretta, V. Kolmanovskii, and L. Shaikhet, “Stability of epidemic model with time delays influenced by stochastic perturbations,” Mathematics and Computers in Simulation, vol. 45, no. 3-4, pp. 269–277, 1998. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  20. L. Shaikhet, “Stability of predator-prey model with aftereffect by stochastic perturbation,” Stability and Control, vol. 1, no. 1, pp. 3–13, 1998. View at MathSciNet
  21. M. Carletti, “On the stability properties of a stochastic model for phage-bacteria interaction in open marine environment,” Mathematical Biosciences, vol. 175, no. 2, pp. 117–131, 2002. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  22. M. Bandyopadhyay and J. Chattopadhyay, “Ratio-dependent predator-prey model: effect of environmental fluctuation and stability,” Nonlinearity, vol. 18, no. 2, pp. 913–936, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  23. R. R. Sarkar and S. Banerjee, “Cancer self remission and tumor stability—a stochastic approach,” Mathematical Biosciences, vol. 196, no. 1, pp. 65–81, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  24. M. Bandyopadhyay, T. Saha, and R. Pal, “Deterministic and stochastic analysis of a delayed allelopathic phytoplankton model within fluctuating environment,” Nonlinear Analysis: Hybrid Systems, vol. 2, no. 3, pp. 958–970, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  25. L. Shaikhet, “Stability of a positive point of equilibrium of one nonlinear system with aftereffect and stochastic perturbations,” Dynamic Systems and Applications, vol. 17, no. 1, pp. 235–253, 2008. View at Zentralblatt MATH · View at MathSciNet
  26. N. Bradul and L. Shaikhet, “Stability of the positive point of equilibrium of Nicholson's blowflies equation with stochastic perturbations: numerical analysis,” Discrete Dynamics in Nature and Society, vol. 2007, Article ID 92959, 25 pages, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  27. B. Mukhopadhyay and R. Bhattacharyya, “A nonlinear mathematical model of virus-tumor-immune system interaction: deterministic and stochastic analysis,” Stochastic Analysis and Applications, vol. 27, no. 2, pp. 409–429, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  28. C. Yuan, D. Jiang, D. O'Regan, and R. P. Agarwal, “Stochastically asymptotically stability of the multi-group SEIR and SIR models with random perturbation,” Communications in Nonlinear Science and Numerical Simulation, vol. 17, no. 6, pp. 2501–2516, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  29. J. Yu, D. Jiang, and N. Shi, “Global stability of two-group SIR model with random perturbation,” Journal of Mathematical Analysis and Applications, vol. 360, no. 1, pp. 235–244, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  30. L. Imhof and S. Walcher, “Exclusion and persistence in deterministic and stochastic chemostat models,” Journal of Differential Equations, vol. 217, no. 1, pp. 26–53, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  31. X. Fan and Z. Wang, “Stability analysis of an SEIR epidemic model with stochastic perturbation and numerical simulation,” International Journal of Nonlinear Sciences and Numerical Simulation, vol. 14, no. 2, pp. 113–121, 2013. View at MathSciNet
  32. X. Fan, Z. Wang, and X. Xu, “Global stability of two-group epidemic models with distributed delays and random perturbation,” Abstract and Applied Analysis, vol. 2012, Article ID 132095, 12 pages, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  33. Z. Wang, X. Fan, and Q. Han, “Global stability of deterministic and stochastic multigroup SEIQR models in computer network,” Applied Mathematical Modelling, vol. 37, no. 20-21, pp. 8673–8686, 2013. View at Publisher · View at Google Scholar
  34. X. Mao, Stochastic Differential Equations and Applications, Horwood Publishing, Chichester, UK, 2nd edition, 2008. View at MathSciNet