About this Journal Submit a Manuscript Table of Contents
Abstract and Applied Analysis
Volume 2014 (2014), Article ID 156513, 7 pages
http://dx.doi.org/10.1155/2014/156513
Research Article

Dynamics of Bose-Einstein Condensates: Exact Representation and Topological Classification of Coherent Matter Waves

1Department of Electrical Engineering, Guilin College of Aerospace Technology, Guilin 541004, China
2School of Mathematics and Computing Science, Guilin University of Electronic Technology, Guilin 541001, China
3School of Mathematical Sciences, Fudan University, Shanghai 200433, China

Received 5 December 2013; Accepted 10 January 2014; Published 3 March 2014

Academic Editor: Dianchen Lu

Copyright © 2014 Leilei Jia et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. B. Davis, M.-O. Mewes, M. R. Andrews et al., “Bose-Einstein condensation in a gas of sodium atoms,” Physical Review Letters, vol. 75, no. 22, pp. 3969–3973, 1995. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Burger, F. S. Cataliotti, C. Fort et al., “Superfluid and dissipative dynamics of a Bose-Einstein condensate in a periodic optical potential,” Physical Review Letters, vol. 86, no. 20, pp. 4447–4450, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. B. Wu, R. B. Diener, and Q. Niu, “Bloch waves and bloch bands of Bose-Einstein condensates in optical lattices,” Physical Review A, vol. 65, no. 2, Article ID 025601, 4 pages, 2002. View at Scopus
  4. A. Chen, S. Wen, and W. Huang, “Existence and orbital stability of periodic wave solutions for the nonlinear Schrödinger equation,” The Journal of Applied Analysis and Computation, vol. 2, no. 2, pp. 137–148, 2012. View at MathSciNet
  5. B. Deconinck, B. A. Frigyik, and J. N. Kutz, “Dynamics and stability of Bose-Einstein condensates: the nonlinear Schrödinger equation with periodic potential,” Journal of Nonlinear Science, vol. 12, no. 3, pp. 169–205, 2002. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  6. G. Chong, W. Hai, and Q. Xie, “Spatial chaos of trapped Bose-Einstein condensate in one-dimensional weak optical lattice potential,” Chaos, vol. 14, no. 2, pp. 217–223, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. G. Chong, W. Hai, and Q. Xie, “Controlling chaos in a weakly coupled array of Bose-Einstein condensates,” Physical Review E, vol. 71, no. 1, Article ID 016202, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. P. Dyke, S. Lei, and R. Hulet, “Phase-dependent Interactions of Bright Matter-Wave Solitons,” Bulletin of the American Physical Society, vol. 57, no. 5, Article ID U6. 00001, 2012.
  9. Y. Xu, Y. Zhang, and B. Wu, “Bright solitons in spin-orbit-coupled Bose-Einstein condensates,” Physical Review A, vol. 87, no. 1, Article ID 013614, 2013.
  10. B. Schlein and H. T. Yau, “Derivation of the Gross-Pitaevskii equation for the dynamics of Bose-Einstein condensate,” Annals of Mathematics, vol. 172, no. 1, pp. 291–370, 2010.
  11. W. Krauth, “Quantum Monte Carlo calculations for a large number of bosons in a harmonic trap,” Physical Review Letters, vol. 77, no. 18, pp. 3695–3699, 1996. View at Scopus
  12. S. Nascimbène, Y. Chen, M. Atala et al., “Experimental realization of plaquette resonating valence-bond states with ultracold atoms in optical superlattices,” Physical Review Letters, vol. 108, no. 20, Article ID 205301, 2012.
  13. V. P. Chua and M. A. Porter, “Spatial resonance overlap in Bose-Einstein condensates in superlattice potentials,” International Journal of Bifurcation and Chaos, vol. 16, no. 4, pp. 945–959, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  14. M. A. Porter and P. G. Kevrekidis, “Bose-Einstein condensates in super-lattices,” SIAM Journal on Applied Dynamical Systems, vol. 4, no. 4, pp. 783–807, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  15. Q. Liu and D. Qian, “Modulated amplitude waves with nonzero phases in Bose-Einstein condensates,” Journal of Mathematical Physics, vol. 52, no. 8, Article ID 082702, 11 pages, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  16. Q. Liu and D. Qian, “Construction of modulated amplitude waves via averaging in collisionally inhomogeneous Bose-Einstein condensates,” Journal of Nonlinear Mathematical Physics, vol. 19, no. 2, Article ID 1250017, 14 pages, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  17. M. A. Porter, P. G. Kevrekidis, and B. A. Malomed, “Resonant and non-resonant modulated amplitude waves for binary Bose-Einstein condensates in optical lattices,” Physica D, vol. 196, no. 1-2, pp. 106–123, 2004. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  18. X. Li, J. Han, and F. Wang, “The extended Riccati equation method for travelling wave solutions of ZK equation,” The Journal of Applied Analysis and Computation, vol. 2, no. 4, pp. 423–430, 2012. View at MathSciNet
  19. S. Chow, M. Jiang, and X. Lin, “Traveling wave solutions in coupled Chua's circuits, part I: periodic solutions,” The Journal of Applied Analysis and Computation, vol. 3, no. 3, pp. 213–237, 2013.
  20. J. Li and Z. Liu, “Traveling wave solutions for a class of nonlinear dispersive equations,” Chinese Annals of Mathematics. Series B, vol. 23, no. 3, pp. 397–418, 2002. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  21. J. Li and G. Chen, “On a class of singular nonlinear traveling wave equations,” International Journal of Bifurcation and Chaos, vol. 17, no. 11, pp. 4049–4065, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  22. L. Brusch, A. Torcini, M. van Hecke, M. G. Zimmermann, and M. Bär, “Modulated amplitude waves and defect formation in the one-dimensional complex Ginzburg-Landau equation,” Physica D, vol. 160, no. 3-4, pp. 127–148, 2001. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  23. J. C. Bronski, L. D. Carr, B. Deconinck, and J. N. Kutz, “Bose-Einstein condensates in standing waves: the cubic nonlinear Schrödinger equation with a periodic potential,” Physical Review Letters, vol. 86, no. 8, pp. 1402–1405, 2001. View at Publisher · View at Google Scholar · View at Scopus
  24. P. F. Byrd and M. D. Friedman, Handbook of Elliptic Integrals for Engineers and Scientists, vol. 67 of Die Grundlehren der mathematischen Wissenschaften, Springer, New York, NY, USA, 2nd edition, 1971. View at Zentralblatt MATH · View at MathSciNet