About this Journal Submit a Manuscript Table of Contents
Abstract and Applied Analysis
Volume 2014 (2014), Article ID 162060, 11 pages
http://dx.doi.org/10.1155/2014/162060
Research Article

A Study about the Integration of the Elliptical Orbital Motion Based on a Special One-Parametric Family of Anomalies

1Departamento de Matemáticas, Instituto de Matemáticas y Aplicaciones de Castellón, Universidad Jaume I de Castellón, 12071 Castellón, Spain
2Departamento de Matemática Aplicada, Universidad Politécnica de Valencia, 46022 Valencia, Spain

Received 26 October 2013; Revised 27 December 2013; Accepted 6 January 2014; Published 24 February 2014

Academic Editor: Benito Chen-Charpentier

Copyright © 2014 José Antonio López Ortí et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Bretagnon and G. Francou, “Variations seculaires des orbites planetaires. Théorie VSOP87,” Astronomy & Astrophysics, vol. 114, pp. 69–75, 1988.
  2. J. L. Simon, “Computation of the first and second derivatives of the Lagrange equations by harmonic analysis,” Astronomy & Astrophysics, vol. 17, pp. 661–692, 1982.
  3. J. L. Simon, G. Francou, A. Fienga, and H. Manche, “New analytical planetary theories VSOP2013 and TOP2013,” Astronomy & Astrophysics, vol. 557, article A49, 2013. View at Publisher · View at Google Scholar
  4. F. F. Tisserand, Traité de Mecanique Celeste, Gauthier-Villars, Paris, France, 1986.
  5. V. A. Brumberg, Analytical Techniques of Celestial Mechanics, Springer, Berlin, Germany, 1995. View at Publisher · View at Google Scholar · View at MathSciNet
  6. P. Nacozy, “Hansen's method of partial anomalies: an application,” The Astronomical Journal, vol. 74, pp. 544–550, 1969.
  7. E. Brumberg and T. Fukushima, “Expansions of elliptic motion based on elliptic function theory,” Celestial Mechanics and Dynamical Astronomy, vol. 60, no. 1, pp. 69–89, 1994. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  8. J. A. López and M. Barreda, “A formulation to obtain semi-analytical planetary theories using true anomalies as temporal variables,” Journal of Computational and Applied Mathematics, vol. 204, no. 1, pp. 77–83, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  9. J. A. López Ortí, M. J. Martínez Usó, and F. J. Marco Castillo, “Semi-analytical integration algorithms based on the use of several kinds of anomalies as temporal variable,” Planetary and Space Science, vol. 56, no. 14, pp. 1862–1868, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. E. Hairer, C. Lubich, and G. Wanner, Geometric Numerical Integration, Springer, Heidelberg, Germany, 2006.
  11. K. Sundman, “Memoire sur le probleme des trois corps,” Acta Mathematica, vol. 36, no. 1, pp. 105–179, 1913. View at Publisher · View at Google Scholar · View at Scopus
  12. P. Nacozy, “The intermediate anomaly,” Celestial Mechanics, vol. 16, no. 3, pp. 309–313, 1977. View at Publisher · View at Google Scholar · View at Scopus
  13. G. Janin, “Accurate computation of highly eccentric satellite orbits,” Celestial Mechanics, vol. 10, no. 4, pp. 451–467, 1974. View at Publisher · View at Google Scholar · View at Scopus
  14. G. Janin and V. R. Bond, “The elliptic anomaly,” NASA Technical Memorandum 58228, 1980.
  15. C. E. Velez and S. Hilinski, “Time transformations and cowell's method,” Celestial Mechanics, vol. 17, no. 1, pp. 83–99, 1978. View at Publisher · View at Google Scholar · View at Scopus
  16. J. M. Ferrándiz, S. Ferrer, and M. L. Sein-Echaluce, “Generalized elliptic anomalies,” Celestial Mechanics, vol. 40, no. 3-4, pp. 315–328, 1987. View at Publisher · View at Google Scholar · View at Scopus
  17. E. V. Brumberg, “Length of arc as independent argument for highly eccentric orbits,” Celestial Mechanics and Dynamical Astronomy, vol. 53, no. 4, pp. 323–328, 1992. View at Publisher · View at Google Scholar · View at Scopus
  18. D. Brouwer and G. M. Clemence, Celestial Mechanics, Academic Press, New York, NY, USA, 1965.
  19. J. J. Levallois and J. Kovalevsky, Géodésie Générale, vol. 4, Eyrolles, Paris, France, 1971.
  20. Y. Hagihara, Celestial Mechanics, MIT Press, Cambridge, Mass, USA, 1970. View at MathSciNet
  21. J. Kovalewsky, Introduction to Celestial Mechanics, D. Reidel, Dodrecht, The Netherlands, 1967.
  22. J. A. López, V. Agost, and M. Barreda, “A note on the use of the generalized sundman transformations as temporal variables in celestial mechanics,” International Journal of Computer Mathematics, vol. 89, pp. 433–442, 2012. View at MathSciNet · View at Scopus
  23. A. Deprit, “Note on Lagrange's inversion formula,” Celestial Mechanics, vol. 20, no. 4, pp. 325–327, 1979. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  24. J. A. López, M. Barreda, and J. Artes, “Integration algorithms to construct semi-analytical planetary theories,” Wseas Transactions on Mathematics, vol. 5, no. 6, pp. 609–614, 2006. View at MathSciNet · View at Scopus
  25. J. Chapront, P. Bretagnon, and M. Mehl, “Un formulaire pour le calcul des perturbations d'ordres élevés dans les problèmes planétaires,” Celestial Mechanics, vol. 11, no. 3, pp. 379–399, 1975. View at Publisher · View at Google Scholar · View at Scopus
  26. J. L. Simon, P. Bretagnon, P. Chapront, J. Chapront-Touzé, G. Francou, and J. Laskar, “Numerical expressions for precession formulae and mean elements for the Moon and the planets,” Astronomy & Astrophysics, vol. 282, pp. 663–683, 1994.
  27. E. Fehlberg and G. C. Marsall, “Classical fifth, sixth, seventh and eighth runge-kutta formulas with stepsize control,” NASA Technical Report R-287, 1968.