About this Journal Submit a Manuscript Table of Contents
Abstract and Applied Analysis
Volume 2014 (2014), Article ID 169694, 5 pages
http://dx.doi.org/10.1155/2014/169694
Research Article

Conservation Laws for a Variable Coefficient Variant Boussinesq System

Department of Mathematical Sciences, International Institute for Symmetry Analysis and Mathematical Modelling, North-West University, Mafikeng Campus, Private Bag X 2046, Mmabatho 2735, South Africa

Received 21 November 2013; Accepted 6 January 2014; Published 12 February 2014

Academic Editor: Hossein Jafari

Copyright © 2014 Ben Muatjetjeja and Chaudry Masood Khalique. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Boussinesq, “Thorie de l'intumescence liquide, applele onde solitaire ou de translation, se propageant dans un canal rectangulaire,” Comptes Rendus de L'Academie des Sciences, vol. 72, pp. 755–759, 1871.
  2. R. L. Sachs, “On the integrable variant of the Boussinesq system: Painlevé property, rational solutions, a related many-body system, and equivalence with the AKNS hierarchy,” Physica D, vol. 30, no. 1-2, pp. 1–27, 1988. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  3. E. Fan and Y. C. Hon, “A series of travelling wave solutions for two variant Boussinesq equations in shallow water waves,” Chaos, Solitons & Fractals, vol. 15, no. 3, pp. 559–566, 2003. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  4. M. Wang, “Solitary wave solution variant Boussinesq equations travelling wave solutions for two variant Boussinesq equations in shallow water waves,” Chaos, Solitons & Fractals, vol. 15, pp. 559–566, 2003.
  5. Z. Fu, S. Liu, and S. Liu, “New transformations and new approach to find exact solutions to nonlinear equations,” Physics Letters A, vol. 299, no. 5-6, pp. 507–512, 2002. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  6. J. F. Zhang, “Multi-solitary wave solutions for variant Boussinesq equations and Kupershmidt equations,” Applied Mathematics and Mechanics, vol. 21, no. 2, pp. 171–175, 2000. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  7. G.-Q. Xu, Z.-B. Li, and Y.-P. Liu, “Exact solutions to a large class of nonlinear evolution equations,” The Chinese Journal of Physics, vol. 41, no. 3, pp. 232–241, 2003. View at MathSciNet
  8. R. Naz, F. M. Mahomed, and T. Hayat, “Conservation laws for third-order variant Boussinesq system,” Applied Mathematics Letters, vol. 23, no. 8, pp. 883–886, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  9. P. D. Lax, “Integrals of nonlinear equations of evolution and solitary waves,” Communications on Pure and Applied Mathematics, vol. 21, no. 5, pp. 467–490, 1968. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  10. T. B. Benjamin, “The stability of solitary waves,” Proceedings of the Royal Society A, vol. 328, no. 1573, pp. 153–183, 1972. View at Publisher · View at Google Scholar · View at MathSciNet
  11. R. J. Knops and C. A. Stuart, “Quasiconvexity and uniqueness of equilibrium solutions in nonlinear elasticity,” Archive for Rational Mechanics and Analysis, vol. 86, no. 3, pp. 233–249, 1984. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  12. R. J. LeVeque, Numerical Methods for Conservation Laws, Birkhuser, Basel, Switzerland, 2nd edition, 1992.
  13. E. Godlewski and P.-A. Raviart, Numerical Approximation of Hyperbolic Systems of Conservation Laws, vol. 118 of Applied Mathematical Sciences, Springer, Berlin, Germany, 1996. View at MathSciNet
  14. A. Sjöberg, “Double reduction of PDEs from the association of symmetries with conservation laws with applications,” Applied Mathematics and Computation, vol. 184, no. 2, pp. 608–616, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  15. A. H. Bokhari, A. Y. Al-Dweik, A. H. Kara, F. M. Mahomed, and F. D. Zaman, “Double reduction of a nonlinear (2+1) wave equation via conservation laws,” Communications in Nonlinear Science and Numerical Simulation, vol. 16, no. 3, pp. 1244–1253, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  16. G. L. Caraffini and M. Galvani, “Symmetries and exact solutions via conservation laws for some partial differential equations of mathematical physics,” Applied Mathematics and Computation, vol. 219, no. 4, pp. 1474–1484, 2012. View at Publisher · View at Google Scholar · View at MathSciNet
  17. E. Noether, “Invariante Variationsprobleme,” Nachrichten von der Königlichen Gesellschaft der Wissenschaften zu Göttingen, vol. 2, pp. 235–257, 1918.
  18. N. H. Ibragimov, Ed., CRC Handbook of Lie Group Analysis of Differential Equations, vol. 1–3, CRC Press, Boca Raton, Fla, USA, 1994–1996.
  19. R. Naz, D. P. Mason, and F. M. Mahomed, “Conservation laws and conserved quantities for laminar two-dimensional and radial jets,” Nonlinear Analysis—Real World Applications, vol. 10, no. 5, pp. 2641–2651, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet